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INTRODUCTION

The high-lift capability of an aircraft is an important design parameter that affects takeoff and

landing performance and low-speed maneuverability. The high-lift system has a direct impact on

maximum allowable takeoff and landing weights for a given runway length. Alternatively, for a given

payload weight, the required takeoff and landing distances are fixed by the high-lift characteristics of

the aircraft. Approach speed and attitude are also determined by the high-lift system performance.

This can have implications for such factors as community noise created by the aircraft during

approach. Meredith [1] has highlighted the importance of the high-lift system on commercial jet

transport aircraft with three examples from a design study for a generic large twin-engine transport.

An increase in lift coefficient of 0.10 at a constant angle of attack allows the approach attitude to be

reduced by about one degree, which can lead to shorter landing gear and reduced aircraft weight. A

1.5% increase in maximum lift coefficient would allow a 6600 lb increase in payload at a fixed

approach speed. Increasing the take-off lift-to-drag ratio (L/D) by 1% permits a 2800 lb increase in

payload or a 150 nautical mile increase in range.

Because the high-lift system has such a strong impact on the low-speed performance of an aircraft,

a significant amount of effort goes into its design. The high-lift capability is only required in the low-

speed flight regime characteristic of takeoff and landing. Most aircraft, particularly commercial

transport aircraft, spend the majority of their flight time in the high-speed cruise flight regime. Thus

transport aircraft wings are generally optimized for the cruise condition where maintaining low drag is

a prime consideration. Airfoil shapes that are efficient for high-speed cruise (Mach 0.8 or higher) are

usually not optimum for the low-speed high-lift flight regime. This leads to the requirement for a high-

lift system that can be stowed during cruise and deployed during low-speed flight. A deployable high-

lift system, however, increases the mechanical complexity and weight of the wing.

Most modern high-lift systems are composed of a basic wing with a deployable leading-edge slat

and at least one, and sometimes more, deployable trailing-edge flap elements as shown in figure 1. It

was recognized as early as 1921 by Handley Page and others [2] that the high-lift performance of a

multi-element airfoil can be improved by increasing the number of trailing-edge flap elements. The

trend in transport aircraft design in the 1960s and 1970s was to achieve better high-lift performance,

Leading edge
slat

Main element

//\
Multiple trailing
edge flap elements

Figure 1. Typical high-lift system for current transport aircraft.

required for the larger transports being designed, by increasing the number of trailing-edge flap

elements. Designs of that era seemed to reach a practical limit of three on the number of trailing-edge



flapelements.TheBoeing737,for example,hasathree-elementtrailing-edgeflap systemwhich is
highlyefficientaerodynamically,butverycomplicatedandcostlyto designandmaintain.Thebenefits
fromtheincreasedhigh-lift performancegainedby usingmorethanthreetrailing-edgeflapelements
areoutweighedby theweightandcostpenalties.

Thecurrenttrendin high-lift systemdesignfor transportaircraftis to returnto simplertwo-element
orevenone-elementtrailing-edgeflapsystemsandimprovetheperformanceof thesesystemsto meet
designrequirements.Aircraft suchastheBoeing767with its single-elementoutboardandtwo-
elementinboardtrailing-edgeflapsandtheAirbus340with its single-elementtrailing-edgeflapsreflect
thisphilosophy.Onewayof accomplishingthenecessaryimprovementsin high-lift performanceof
simplerhigh-lift systemsis throughapplicationof newcomputationalandexperimentaltoolswhich
permitabetterunderstandingof associatedflow physics.Theflow field associatedwith high-lift
multi-elementtwo-dimensionalairfoilsor three-dimensionalwings isextremelycomplex. Suchflow
fieldsaregovernedby viscousphenomenasuchastransitionof boundarylayersfrom laminarto
turbulent,laminarboundarylayerseparationandreattachment,confluentwakesandboundarylayers,
viscouswakeinteractions,andseparatedflow. Advancesin computertechnologyoverthepast20
yearsnow makepossiblenumericalsimulationsof theflow fieldsassociatedwith multi-element
airfoilsandwingsusingthefull Navier-Stokesequationsor appropriatesubsetsof thefull equations.
New experimentaltechniqueshavealsobeendevelopedsuchasLaserVelocimetry(LV), Doppler
GlobalVelocimetry(DGV),andPressureSensitivePaint(PSP),whichpermitmuchgreaterdetail
abouttheflow fieldsassociatedwith high-lift systemsto beobtainedexperimentally.Theseadvances
in computationalandexperimentalcapabilitieshaveprovidedhigh-lift systemdesignerswith newtools
to usefor improvingthedesignof multi-elementairfoilsandwings. Thesetoolscanprovidedesigners
with abetterunderstandingof theflow physicsgoverninghigh-lift systems,allowingthemto tailor the
pressuredistributionoverindividualelementsof thehigh-lift systemandto optimizethegeometric
positioningof thevariouselements,leadingto betterhigh-lift performance.

Attentionis alsobeingfocusedontheuseof miniatureflow-enhancementdevicessuchasvortex
generators,trailing-edgewedges,andlift-enhancingtabsto improvetheperformanceof high-lift
systems.Examplesof thesedevicesareshownin figure2. Thesizeof thedeviceshasbeen
exaggeratedfor illustrationpurposes.Thesedeviceshavetheadvantageof beingsimple,lightweight,
andcheap.Thesizeof thedevicesis generallyof theorderof the localboundarylayerheight.
Appropriatelypositionedontheairfoil orwing,thesedevicescanhaveasignificantimpactof the
performanceof thehigh-lift system.

StormsandJang[3] conductedanexperimentalinvestigationof theuseof vortexgeneratorsto
delayseparationontheuppersurfaceof asingle-elementairfoil. TheyfoundthatWheelerwishbone
typevortexgeneratorswith aheightof 0.5%chordmountedat alocation12%chordbackfrom the
leadingedgeon theuppersurfaceof aNACA 4412airfoilwereeffectivein delayingflow separation.
Thevortexgeneratorsdelayedtheonsetof flow separationon theuppersurfacefrom anangleof attack
of 12° to anangleof attackof 19°. This increasedthevalueof Clmax by 23%. The vortex generators

produce the same type of effect on the plot of lift coefficient versus angle of attack that a leading edge
slat does. At lift coefficients below Clmax, the lift coefficient remains unchanged when vortex

generators are added. The vortex generators also had the effect of increasing the drag of the airfoil

substantially. Thus they would need to be retracted for efficient cruise performance.

Trailing-edge wedges, or divergent trailing edges, have been investigated by a number of

researchers, including Valarezo, et. al. [4]. Valarezo conducted an experimental investigation of

trailing-edge wedges placed on the lower surface of the flap at the trailing edge on a three-element

airfoil (slat, main element, flap). Wedges with angles of 15 ° , 30 ° , 45 ° , and 60 ° were tested. The

2



Lift-enhancingtab

Trailing edgewedge

J

_ Vortex generator

Figure 2. Examples of miniature flow-enhancement devices.

wedges had a length of 3% chord and height was determined by the wedge angle. The wedges

produced an increase in lift coefficient that was largest at an angle of attack of 0 ° and diminished as the

angle of attack was increased. The 60 ° wedge produced an increase of 0.2 in Clmax at a Reynolds

number of 5 x 106. When Reynolds number was increased to 9 x 106, the change in Clmax due to the

60 ° wedge was only 0.07. The baseline lift data for the three-element airfoil also indicated a strong

dependence on Reynolds number, with Clmax increasing by 0.1 as Reynolds number was increased

from 5 x 106 to 9 x 106. Flow over the upper surface of the baseline flap separated at approximately

the 70% flap chord location when angle of attack was 8°. Valarezo hypothesizes that the sensitivity to

Reynolds number for the baseline flap could be due to the presence of flow separation on the upper

surface of the flap. The same could be true for the sensitivity of the performance of the trailing edge

wedges to Reynolds number.

Lift-enhancing tabs have received considerable attention over the last few years and appear to be

one of the more promising means of improving high-lift performance. A lift-enhancing tab is a flat

plate with a height of between 0.25% and 5% of the main wing chord. It is attached to the lower

surface of the airfoil at the trailing edge as shown in figure 2. One of the advantages of lift-enhancing
tabs over the devices discussed above is that the tabs can be retracted or stowed when not in use. This

means that lift-enhancing tabs can be attached to the trailing edge of any or all elements of a multi-

element airfoil as shown in figure 3. Gurney flaps, named after the race car driver Dan Gurney, are an

example of a lift-enhancing tab. The Gurney flap was placed at the trailing edge of the wing on an

Indianapolis race car and was found to provide increased downforce on the wing (note that race car

wings are inverted so that lift is toward the race track) resulting in better cornering performance.



Slattab

J

Cove tab

/
Flap tab

Figure 3. Lift-enhancing tabs on a 3-element airfoil.

,_ Separation

a) Trailing-edge flow conditions of a conventional airfoil at
a moderate lift coefficient.

Flow partially
Upstream /,7 /"-" turned toward

separation flap
bubble

Gumey
flap Two vortices

of opposite
sign

b) Hypothesized trailing-edge flow conditions of the airfoil
of (a) with a Gurney flap.

Figure 4. Hypothesized flow field around a Gumey flap [5].

4



Leibeck[5] providessomeof theearliestwindtunneldatadocumentingtheeffectsof aGurney
flaponasingle-elementairfoil. Leibecktesteda 1.25%chordGurneyflap onaNewmanairfoil. Lift
coefficientincreasedby approximately0.35atall anglesof attackanddragcoefficientwasreducedby
roughly50dragcountsfor all valuesof lift coefficient.Thereductionin dragcoefficientwasa
surprisingresultto Leibeck. A hypothesizedflow field in thevicinity of theGumeyflap,shownin
figure4,is proposedby Leibeckin anattemptto explainthedragreductionobservedin the
experiment.However,helackedsufficientdatato verify hishypothesis.

KatzandLargman[6] experimentallyinvestigatedtheperformanceof aGurneyflapattachedto the
flap trailingedgeof atwo-elementracecarwing. TheGurneyflaphadaheightof 5%chord. In this
case,theGumeyflap wasfoundto provideincreasesin lift coefficientontheorderof 0.5at anormal
operatingangleof attack.However,thelargesizeof theGumeyflapusedcreatedasignificant
increasein dragaswell. Thelift-to-dragratiofor thewing droppedfromapproximately8.0to 6.0
whentheGurneyflap wasinstalled.

RoeschandVuillet conductedtestsof lift-enhancingtabsatthetrailingedgeof singleelement
horizontalstabilizersandverticaltailsonhelicopters[7]. Tabheightsof 1.25%chordand5%chord
wereused.The 1.25%chordtabincreasedlift coefficientby 0.25to 0.4at agivenangleof attack,
with thelargerincreaseoccurringattheangleof attackfor Clmax. Drag coefficient for this case was

essentially the same as the baseline case at the same lift coefficient. The 5% chord tab produced

increases in lift coefficient of 0.35 to 0.65 at a given angle of attack, with the larger increase again

occurring at the angle of attack for Clmax- In this case, however, the drag coefficient at moderate lift

coefficient was nearly doubled. Plots of pressure coefficient distribution on the stabilizer, with and

without the tabs, indicates that the tab increases the aft loading of the airfoil as shown in figure 5.

Note that the lift coefficient was held constant at C1 = 1.07 for the comparison.

Figure 5. Effect of trailing edge strips on chordwise pressure distribution [7].
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Lift-enhancing tabs mounted at the trailing edge of a two-dimensional wing with a NACA 4412

airfoil section were tested in an experiment performed in the NASA Ames Research Center 7- by 10-

Foot Wind Tunnel by Storms [3]. Tab height was varied from 0.5% to 2.0% chord in 0.5% chord

increments. The lift coefficient was increased by as much as 0.5 over the baseline using a 2.0% chord

tab. The increment in lift coefficient obtained for each increment in tab height grew successively

smaller. This implies the existence of an optimal tab height which yields the maximum increment in lift

coefficient for a given airfoil. Drag coefficient at moderate lift coefficients remained unchanged for the

smallest tab height and increased by as much as 100% for the largest tab height. The pitching moment

coefficient became increasingly negative as tab height was increased. Plots of the pressure distribution

on the airfoil indicate that this is a result of the increased loading on the aft portion of the airfoil caused

by the tab, as shown in figure 6. These plots also indicate that the tabs increase the circulation of the

airfoil. The tabs were also tested at locations 1.25% and 2.37% chord forward of the trailing edge.

Moving the tabs forward approximately 1 to 2 tab heights did not change the effectiveness of the tabs.

In a more recent experiment conducted by Storms [8, 9] in the NASA Ames Research Center 7- by

10--Foot Wind Tunnel, lift-enhancing tabs mounted at the trailing edge of the main element and the flap

of a two-element airfoil model were tested. This is the first known experimental data available on the

effect of placing lift-enhancing tabs at the trailing edge of the main element on a two-element airfoil.
The airfoil was an NACA 632-215 ModB airfoil with a 30% chord slotted flap. The flap

deployment did not include significant fowler motion. The model was tested at four combinations of

flap angle, gap, and overlap. Tab heights of 0.5% and 1.0% chord were tested at the main element

trailing edge and a tab height of 0.5% chord was tested at the flap trailing edge. For a flap angle of

22 ° , lift-enhancing tabs mounted at the trailing edge of the main element reduced the lift coefficient for

all angles of attack and drag was substantially increased. When the flap angle was increased to 32 ° ,

Cp

-3_

-2

A

-1 _I

0

1 i

_0.5%c Gurney flap

/_ 1.0%c Gurney flap

I Io 0.'4 o.'8 1

Figure 6. Effect of Gurney flap height on chordwise pressure distribution of a NACA 4412 airfoil at

o_ -- 9 ° [3].



the flow was separated over the majority of the upper surface of the flap for the baseline case.

Addition of a lift-enhancing tab at the trailing edge of the main element caused the flow over the upper

surface of the flap to reattach, significantly increasing the lift coefficient and reducing the drag

coefficient. A similar result was observed when the flap angle was increased to 42 ° and the flap gap

was made large (5% chord). Unfortunately, this two-element airfoil is not very representative of

current transport high-lift systems, due to the lack of significant fowler motion in the flap deployment.

Very little work on formulating an understanding of the flow physics associated with lift-enhancing

tabs has been reported in the literature. As mentioned earlier, Leibeck [5] proposed a hypothetical flow

field generated by the lift-enhancing tab, but his hypothesis has not yet been rigorously verified.

Water tunnel tests of a rectangular wing with NACA 0012 airfoil and a lift-enhancing tab at the wing

trailing edge provide some qualitative information on the flow structure behind the tab at low Reynolds

number [10]. Dye injected into the flow near the trailing edge indicates the presence of two counter-

rotating recirculation regions behind the lift-enhancing tab.

A two-dimensional computational investigation of the lift-enhancing tabs tested on the 4412 airfoil

of reference [3] was conducted by Jang [11] which provided some insight into the flow physics

associated with tabs as applied to the trailing edge of a single-element airfoil. The computations were

performed using the incompressible Navier-Stokes code INS2D-UP. The outer boundary of the C-

grid used to represent the airfoil in these computations was only about 6 chord lengths away from the

airfoil surface and the grid was relatively coarse (250x69). Comparisons of the computational and

experimental results [3] indicate that the general trends observed in the experimental lift and drag

coefficient data when a tab is added to the wing trailing edge are reproduced by the computational

results. However, the magnitude of the change in the lift and drag coefficients due to adding a tab of

given size to the wing trailing edge is not accurately reproduced by the computations.

A similar computational investigation of the multi-element airfoil described in references [8] and [9]

was conducted by Carrannanto [12]. The two-element airfoil was represented with a composite

structured grid created using a chimera scheme. The C-grid for the main element consisted of 307 x 98

grid points and the C-grid for the flap consisted of 155 x 42 grid points. The boundary layer along the

tab surface was not resolved by the grids used in this study. The outer boundary of the composite grid

was located 10 chord lengths from the airfoil surface. A comparison of the experimental and

computational results indicates that the magnitude of the change in lift and drag coefficients due to the

addition of a tab at the trailing edge of the main element is predicted well by the computations.

However, the slope of the lift coefficient versus angle of attack curve predicted by the computations

did not match the experimental results very well. One of the interesting results of this computational

study is that when a tab is added to the main element, the separated flow over the upper surface of the

flap is replaced with a flow reversal in the wake of the main element above the trailing edge of the flap,

as shown in figure 7. This reversal of the flow away from the flap surface appears to be due to the

inability of the main element wake to negotiate the adverse pressure gradient encountered over the

upper surface of the flap.

In the present research, a detailed parametric experimental and computational investigation of the

effect of lift-enhancing tabs on a multi-element airfoil is conducted. The objective of the investigation

is to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-

element airfoil configuration which is representative of current transport high-lift systems. It is

anticipated that an understanding of the flow physics will lead to the development of a model which

can be used to explain how lift-enhancing tabs work on multi-element airfoils. To accomplish the

objective of this study, a two-element high-lift airfoil was tested in the NASA Ames 7- by 10-Foot

Wind Tunnel [13]. The airfoil tested was the two-element airfoil described in references [8]
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a) Baselineairfoil with no tab,o_= 8.43° b) Airfoil with 1%ctabat 1%cfrom trailing
edge,o_= 8.5°

Figure7. ComputedstreamlinepatternsaroundNACA 632-215ModBairfoil with a
slottedflap. Recreatedfrom reference[12].

and[9], but with theslottedflap replacedby a30%chordfowlerflap. Theparametersthatwere
systematicallyvariedin thetestareflapangle,flapgap,tabheight,andtheelementto whichthetab
wasattached.Dataacquiredduringthetestincludesdetailedsurfacepressuremeasurementsand
seven-holeprobeflow surveysbehindselectedconfigurations.

A companionsetof computationswasperformedusingtheincompressibleNavier-Stokescode
INS2D-UP. Someof thecomputationswereperformedprior to theexperimentandwereusedto
guidetheexperimentalwork. Computationalsolutionswereobtainedfor a largenumberof the
configurationstestedin theexperiment.After validatingtheNavier-Stokescomputationswith
experimentalresults,theexperimentalandcomputationaldatabasesareusedto developan
understandingof how lift-enhancingtabsfunctiononamulti-elementairfoil.

Thisreportdescribestheresultsof theaforementionedexperimentalandcomputational
investigation.Detailsof theexperimentalsetupandthemodelaregiven. Thetestproceduresusedfor
theexperimentarediscussed.Thegoverningfluid dynamicsequationsarederivedandthespecific
numericalschemeusedby INS2D-UPto solvethemis described.Thegrid generationprocessused
andthecompositegridsusedfor thecomputationsarecoveredin detail,alongwith theboundary
conditionsemployed.A comparisonof theexperimentalandcomputationalresultsis presentedand
differencesbetweenthetwo setsof dataarediscussed.Finally,a theoreticalmodelwhichdescribes
how lift-enhancingtabsworkonamulti-elementairfoil isdeveloped.



EXPERIMENTAL SET-UP

A two-dimensional two-element high-lift airfoil was tested in the NASA Ames Research Center

7- by 10-Foot Wind Tunnel. Baseline configurations and configurations which included lift-enhancing

tabs were tested for a variety of different flap riggings. This section describes the experimental set-up

which was used. First, a description of the test facility will be given. The model installation will be

outlined, followed by a description of the model itself. Finally, the model instrumentation and the data

acquisition system will be described.

Facility Description

The NASA Ames 7- by 10-Foot Wind Tunnel is a closed-circuit, single-return wind tunnel with

the return passage at atmospheric pressure. A diagram of the tunnel is shown in figure 8. The tunnel

is capable of a dynamic pressure range of 5 to 200 psf. The free stream turbulence intensity level in

Pressure chamber @ I

Air exchange

I

7ftx 10ft
test section

Figure 8. Schematic diagram of the NASA Ames 7- by 10-Foot Wind Tunnel.

the test section is 1.0% at a free stream velocity of 225 ft/sec. The test section is 15 ft long, with a

constant height of 7 ft and a width at the beginning of the test section of 10 ft. The width of the test

section includes a one percent divergence to account for the test section boundary layer growth. The

maximum boundary layer thickness in the test section is approximately 6 - 9 in. The side walls of the

test section are removable and a variety of side wall options are available, including acoustically treated

side walls and side walls with large windows made of high quality optical glass. The side walls with

windows allow flow visualization techniques and non-intrusive flow measurement techniques such as

laser doppler velocimetry (LDV) to be used. The 7- by 10-Foot Wind Tunnel is used primarily for

small-scale exploratory investigations in the areas of basic fluid mechanics and acoustics.

A traversing rig capable of linearly traversing probes vertically, horizontally, and longitudinally is

mounted in the tunnel ceiling. The traverse rig can be run manually or operated by computer in a

closed-loop fashion for automated traverses. Many different types of probes can be accommodated on

the traverse, including hot wire probes, seven-hole probes, and pitot-static probes. All of the

instrumentation wiring and pressure tubing required for a particular probe can be routed out of the test



section internally in the traverse rig. The entire volume of the test section can be surveyed using the

traverse rig.

Model forces and moments are generally measured using the tunnel's external balance system.

Sting mounted models with an internal balance can also be accommodated. A turntable in the tunnel

floor allows the model angle-of-attack to be varied. A second turntable can be mounted in the tunnel

ceiling for two-dimensional testing. When two-dimensional models are mounted in the tunnel using

both turntables, the tunnel external balance system cannot be used for direct measurement of forces and

moments. In this situation, model loads must be obtained by integrating surface pressures on the

model. Model drag for a two-dimensional model can be obtained using wake survey techniques.

Two pressurized air systems are available for use in the 7- by 10-Foot Wind Tunnel. The high-

pressure air system has a supply pressure of 3000 psig and can deliver mass flow rates of 10.0

lbm/sec. Heaters installed in the system allow the air temperature to be controlled. The low-pressure

air system has a supply pressure of 140 psig and can deliver mass flow rates of 30.0 lbm/sec. The

low-pressure system is convenient to use in applications where high air pressures are not required,

such as for boundary layer control (BLC) applications.

Model Installation

The two-element airfoil model used for this study was mounted vertically in the Ames 7- by 10-

Foot Wind Tunnel as shown in figure 9. The model is attached at the top and bottom to pedestals,

which in turn are attached to the tunnel upper and lower tunnel turntables. The model is aligned in the

tunnel so that at an angle of attack of 0 ° the model chord line is parallel to the tunnel centerline. This

was accomplished using a laser transit. Wall-to-wall image planes are mounted to the tunnel ceiling

and floor as shown in figure 9 to keep the model out of the tunnel boundary layer and to serve as end

walls for the airfoil model. The image planes are located at a distance of one foot from the floor and

ceiling and extend approximately 2.5 airfoil chord lengths upstream and downstream from the center of

rotation of the model.

Auxiliary turntables are mounted between the model and the pedestals, coplanar with the ground

planes, to accommodate the model Boundary Layer Control (BLC) system. The BLC system is used

to ensure the flow over the wing is two-dimensional. The BLC system, shown in figure 10, is

composed of 4 tangential blowing slots mounted on each auxiliary turntable. The blowing slots are

located on the upper side of the airfoil at the leading edge, the mid-chord, and the trailing edge of the

main element and the mid-chord of the flap. The slots for the trailing edge of the main element and for

the flap are mounted in circular plugs. This permits the direction of the flow from the slots to be

adjusted for different flap angle settings. Air for the BLC system is provided by the tunnel low-

pressure air system. A single supply line is manifolded to three pairs of gate valves as indicated in

figure 11. One pair of valves controls the upper and lower main-element leading-edge slots. The

second pair of valves controls the upper and lower main-element mid-chord slots. The final pair of

valves controls the upper and lower main-element trailing-edge and flap slots. This allows the plenum

pressure for each pair of upper and lower blowing slots to be matched to one another.

Model Description

The model used for this test is a rectangular wing with an NACA 632-215 ModB airfoil. The

ModB designation refers to slight modifications that were made to the upper surface of the original

NACA airfoil by Hicks [14] to improve cruise performance. Coordinates for the main element and the
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Figure9. Installationof theNACA 632-215ModBairfoil in theNASA Ames7-by 10-FootWind
Tunnel.

Figure10.Schematicdiagramof theBoundaryLayerControl(BLC)system.

11



To Upper To Upper
Trailing Edge Main Mid

and Flap Slots _ _. Slot (

///'_ To Lower

Manual Valves Trailing Edge
and Flap Slots

To Upper Main
Leading Edge

Slot (_') _ Pressure Gauge

To Lower Main To Lower Main

Mid Slot Leading Edge Slot

Incoming Pressurized
Air

Figure 11. Manifold setup for the Boundary Layer Control (BLC) system.
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Airfoil with 30% chord fowler flap Q_

Figure 12. Diagram of the NACA 632-215 ModB airfoil.
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flap are given in appendix A. The span of the wing is 60 in. and the chord for the clean airfoil is 30 in.

The trailing edge of the wing from x/c=0.62 to x/c=l.0 is removable and can be replaced with a trailing

edge that has a flap cove incorporated as shown in figure 12. For this test, a trailing edge that

extended from x/c=0.62 to x/c=0.95 was used along with a 30% chord fowler flap.

The fowler flap is attached to the wing trailing edge by flap brackets at span locations of

y/b = 0.033, 0.346, 0.654, and 0.967. The brackets are a two piece arrangement as shown in figure

13, with holes drilled to allow nominal flap deflection angles of _f = 10 °, 20 °, 30 °, and 40 °. Flap

overlap is continuously adjustable between Xol/C = 0.002 and xol/c - 0.041. Flap gap can be set in

increments of 1% chord starting at Zg/C = 0.02 using a series of spacer blocks and/or a second set of

brackets for larger gaps. Flap deflection, gap, and overlap were measured as shown in figure 14.

J
7_

spacer bloc /adjust gap

bracket slides forward

and aft to adjust
overlap

flap angle adjustment

10 -40 ° in 10 °increments

Figure 13. Sketch of flap brackets.

flap gap

Zg/c

flap overlap

Xol/c

Figure 14. Definition of flap rigging parameters.

angle
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Instrumentation

Instrumentation on the model consisted of 9 rows of static pressure taps on the main element and 3

rows of static pressure taps on the trailing edge and the flap. The locations of the rows of pressure

taps are shown in figure 15. The position of the flap brackets is shown for reference. A total of 392

pressure taps were installed on the model. The coordinate locations of all the pressure taps on the row

at the mid-span of the model are given in Appendix B. Static pressure taps were also installed on both

image planes. A row of 10 taps spanning the width of the tunnel was installed parallel to the leading

edge of each of the image planes. These taps were used to obtain a reference dynamic and static

pressure for the model. All of the static pressure taps were connected to Pressure Systems

Incorporated (PSI) electronic pressure sensing modules (either 48 or 64 port modules). The modules

were stored in a thermal chamber designed to keep the temperature constant at approximately 110°F in

order to reduce thermal drift of the transducers to a negligible value.

Main Element Trailing Edge Flap

Row 9 I

Row 8

Row 2

Row 1

I

I
I

I

1
I

I

Flap Brackets ,_,,, :_¢1

7

tOW 3

3

_OW 2

3

low 1

7

Figure 15. Location of static pressure tap rows on main element, trailing edge, and flap.

A wake rake was used to obtain the airfoil viscous drag. The wake rake can be seen mounted to

the tunnel traverse rig in figure 9. It is composed of a rectangular wing with a symmetric airfoil which

holds all the pressure probes making up the rake and a main body which houses the drive mechanism

for pivoting the rake as well as the electronic pressure sensing modules. The rake has 91 total pressure

tubes, 9 static pressure tubes, and 5 three-hole directional probes. The spacing of the total pressure

tubes is denser (0.25 in.) in the middle of the rake and sparser (1 in.) at the ends. The static pressure
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tubes and three-hole directional probes were spaced equally along the length of the rake. The total

wake rake width is 36 in. The static pressure tubes were vertically offset from the plane of the total

pressure tubes by 1.0 in. to minimize interference effects on the static pressure measurement. The

three-hole directional probes are used to line up the wake rake with the local two-dimensional flow

field. All of the pressure probes from the wake rake are connected to PSI electronic pressure sensing

modules contained in the main body of the wake rake. The modules were mounted to a hot-plate

designed to keep the temperature of the modules constant at 110°F in order to reduce thermal drift of

the transducers to a negligible value.

A sting with three seven-hole probes was also mounted to the tunnel traverse rig in place of the

wake rake for part of the test [15]. The seven-hole probes were used to conduct flow surveys behind

the model. A diagram of the three seven-hole probes mounted on the sting is shown in figure 16. All

three seven-hole probes were connected to a PSI module stored in the pod at the back end of the sting

mount. This PSI module was also mounted on a hot-plate to keep the temperature of the module

constant.

Amount to

flow I-_sting

_Nseven-hole probes instrumentation
pod

a) Side view

seven hole

probe 3

Sp;;_n _ole ]/__ _e-Tven hole

probe 1
0.25 in.

b) View of sting tip and probes looking downstream

Figure 16. Schematic of three seven-hole probes mounted on a sting.
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Testsectionconditionswererecordedfor everydatapointduringthetest. Theparametersdefining
thetestsectionconditionsaretestsectionrelativehumidity,testsectiontemperature,referencestatic
pressure,referencedynamicpressure,atmosphericpressure,andmodelangleof attack.Thereference
staticanddynamicpressuresweremeasuredusingthetworowsof staticpressuretapson theimages
planes,asmentionedearlier. Therationalefor obtainingthereferencestaticanddynamicpressuresin
thismannerandtheactualprocedureusedwill bediscussedin thenextsection.

Themajority of theexperimentalmeasurementsweremadeusingthePSI8400systemandPSI
electronicpressuresensingmodules.Theaccuracyof measurementsmadeusingthissystemis 0.25%
of thefull-scalerangeof the individualmodules.Moduleswith rangesof 10in. H20, 1psid,
2.5psid,5 psid,and10psidwereusedto measurethestaticpressureson themodel,aswell asthe
pressuresfrom thewakerake,theseven-holeprobe,andstaticpressureson theimageplanes.The
criteriausedfor assigningpressuremeasurementsto differentmoduleswasthatthemeasurements
shouldutilizethemajorityof therangeof themodule.Thiscriteriaminimizestheerrorin agiven
pressuremeasurement.Thetunneltemperaturemeasurementwasaccurateto -+0.3° F. Therelative
humiditymeasurementwasaccurateto _-_+0.5%.Thebarocellusedto measureatmosphericpressure
wasaccurateto _+0.002psi. Themodelangleof attackmeasurementwasaccurateto _+0.05°. Thereis
ahysteresisin themechanismfor changingmodelangleof attackof approximately0.25° if the
directionof theturntableisreversed.Thusduringthis test,modelangleof attackwasalways
increasedfrom0° to theangleof attackfor stall. Theprocedurefor returningthemodelto 0° wasto
bringthemodelto -2° first andthenreturnit to0°.

Data Acquisition System

The data acquisition system used for this experiment consisted of a Macintosh Quadra 650

computer running Labview version 2.2 software by National Instruments. In addition, a PSI 8400

system was used to calibrate and acquire data from the PSI electronic pressure sensing modules.

Communication between the PSI 8400 and the Macintosh Quadra was handled by means of a GPIB

interface. The Labview software allowed complete control of the data acquisition process. For

example, instructions could be issued in Labview via a graphical user interface to have the PSI 8400

system calibrate the PSI electronic pressure sensing modules or to take a data point. The data acquired

by the PSI 8400 system was passed via the GPIB interface to Labview for display and storage.

Analog signals such as test section temperature were acquired using an A/D converter card from

National Instruments in the Macintosh Quadra. This was also controlled using Labview. The

Labview data acquisition routines were based on the routines originally written by Storms for the

experiment of references [8] and [9].

Data reduction was handled within the Labview program as well. Labview routines were written

to convert all the measured pressures to pressure coefficients and to numerically integrate the pressure

distributions at each row of pressure taps on the model to obtain force and moment coefficients. A

routine was written to convert data acquired by the wake rake to a drag coefficient. The data acquired

using the seven-hole probes was converted to velocity components and static and dynamic pressure.
All of the measured and reduced data was written to an ASCII file which was compressed and

appended to an indexed, binary database file after each run.

An important aspect of the Labview data acquisition program was the capability to graphically

display selected subsets of the data during a run. The Labview program could be switched to a real-

time mode during a run and plots of pressure coefficient on the wing and flap displayed. The plots

were updated about once every two seconds. This allowed the pressure distribution on the wing to be
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checked for two-dimensionality and also permited easy identification of static pressure taps that were

leaking or plugged. Plots of the wake rake pressures allowed the wake rake to be centered on the

wake at each angle of attack and permited alignment of the wake rake with the local streamlines. The

pressure at each of the blowing slots in the BLC system was also monitored to ensure that the BLC

system was functioning properly. Test section parameters were displayed in a table that was

continuously updated during a run. After each data point was taken, a running plot of lift coefficient

versus angle of attack was updated with the latest point, permitting easy identification of the angle of

attack for Clrnax- The ability to display data graphically during a run greatly increased the efficiency of

the test and helped ensure the quality of the data.
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TEST PROCEDURES

The test of the NACA 632-215 ModB airfoil in the NASA Ames 7- by 10-Foot Wind Tunnel was

divided into several phases. First, the seven-hole probes were calibrated in the empty tunnel. Next a

dynamic pressure calibration between the image planes was performed. Finally, the model was

installed and tested. This section describes the various calibrations that were performed prior to

installing the model. The basic test procedures used during the test are then discussed. The section

concludes with a discussion of data quality and repeatability.

Empty Tunnel Calibrations

The first part of the test was dedicated to calibrating the seven-hole probes in the empty wind

tunnel. The seven-hole probe sting assembly was mounted to a calibration rig which in turn was

mounted to the traverse rig in the tunnel. The sting could then be set at any arbitrary angle (Z7h in the

vertical plane, and [_7h in the horizontal plane. This setup permitted a range of +45 ° for both O_7hand

_7h. A pitot-static probe mounted in the test section was used to monitor test section dynamic

pressure. The tunnel dynamic pressure was set to approximately 50 psf. The probe was run through

the full range of (X7hand _7h angle combinations in 5 ° increments. At each known geometric angle,

the seven pressures on each probe were recorded and converted to nondimensional coefficient form.

All of the data was used to form calibration tables employing the technique described by Zilliac [16].

Once the seven-hole probe calibration was complete, the image planes were installed in the tunnel.

A dynamic pressure calibration was performed to obtain the dynamic pressure between the image

planes with no model installed as a function of the dynamic pressure measured using a static pressure

ring upstream of the test section. A pitot-static probe was mounted to the traverse rig and was

positioned at the center of the test section. Dynamic pressure, as measured by the static pressure ring

upstream of the test section, was varied from 10 psf to 70 psf in 5 psf increments and the

corresponding dynamic pressure measured using the pitot-static probe was recorded. The dynamic

pressure measured by the pitot-static probe was corrected for compressibility effects using equation (1)

below, which was taken from reference [17].

, 3
Aq_ = 0.0089 + 0.0033 * qu _- 1.319E - 4 * q2 + 1.24E - 7 qu

q_ = G + Aq,7

(1)

The calibration was performed with the BLC system off and repeated with the BLC system on. The

difference between the calibration curves obtained with the BLC system on and off was negligible.

The dynamic pressure based on this calibration was recorded for all data points taken during the test to

try to assess the change in dynamic pressure due to changes in model blockage.

The reference dynamic and static pressures used to nondimensionalize the pressure data on the

airfoil were obtained from a numerical integration of the static pressure tap measurements on the image

planes. As mentioned previously, static pressure taps were installed on both the upper and lower

image planes, providing a redundant set of static pressures with which to compute the reference static

pressure. The number of static taps required to accurately compute the reference static pressure was

determined by examining the pressure distribution on the image plane predicted by a Navier-Stokes

computation of the two-element airfoil in the tunnel.
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Basic Test Procedure

Once the empty tunnel calibrations were complete, the model was installed between the image

planes. Boundary layer trip strips were installed on the upper and lower surface of the main element at

x/c = 0.05 and x/c = 0.10 respectively. The trip strips consisted of 0.015 in. diameter glass beads

attached to the wing surface with Polaroid film fixer. The required diameter of the glass beads for the

present test conditions was determined using the method of reference [18]. Trip strips were not used

on the flap in this test. The number of changes to the flap configuration required during the test made

it too difficult to maintain a consistent trip strip on the flap.

The supply pressure required for each of the blowing slots of the BLC system was determined as

follows. The tunnel dynamic pressure was set to 50 psf at the upstream static pressure ring, yielding

the required reference dynamic pressure of 66 psf between the image planes. The model surface

pressures for rows 1, 5, and 9 on the main element and rows 1, 2, and 3 on the trailing edge and flap

were plotted on a real-time display to monitor variations in pressure across the span of the wing. The

supply pressure for each of the blowing slots was set to minimize variations across the span of the

wing. The real-time display was monitored throughout the test and the supply pressures needed to

maintain two-dimensional flow were found to be independent of model configuration. The pressure in

the plenum immediately upstream of each blowing slot was recorded throughout the entire test to

ensure that the BLC system was functioning properly for all data points.

The test matrix included parametric variations of flap deflection angle 8f, flap gap Zg/C, tab height

zt/c, and element to which the tabs were attached. Flap overlap was not varied for this test. A

previous test of the baseline airfoil indicated that a flap overlap of Xol/C -- 0.015 was near optimum for

most flap riggings. Thus, this value of flap overlap was used for the present test. All data was taken

at a Reynolds number based on wing chord of 3.5 million. Table 1 summarizes all the parameters

varied in this test.

Table 1. Summary of test parameters.

_f Zg/C Xol/C Zt/C element

with tab

19° 0.02 0.015 0 none

29° 0.03 0.0025 main

39° 0.04 0.005 flap
0.05 0.01 both

For each configuration tested, the model was rotated through an angle-of-attack range starting at 0 °

and increasing until the airfoil stalled. The lift coefficient and pitching moment coefficient were

computed by numerically integrating the center row (y/b = 0.5) of surface static pressures on the main

element, trailing edge, and flap. The drag coefficient was computed by applying Betz's formula [19]

to the wake rake data, which was taken at a position one chord length behind the flap trailing edge.

Betz's formula can be written as shown in equation (2).

Cd=fPT_Pswrdlll'-t-Ill PT_-P_wrq_q_ I PTwrq_< Pswr)l_PT_-Pswrq --t-_ q 2 "[PTwr--Pswr 2d) ll)

(2)
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TheNACA 632-215ModBmulti-elementairfoil hasaveryabruptstall. Theflow overtheentire
uppersurfaceof theairfoil separateswhentheangleof attackexceedsthatfor C1max-Thiscreatesa
veryturbulentwakedownstreamof theairfoil whichcausesheavybuffetingof thewakerakeandthe
traversesystem.Thewakerakehadto betetheredto thetunnelceilingwith asteelcableduringeach
runsothatthebuffetingfrom theturbulentwakewouldnotcausedamageto thetraversesystem.The
lateralpositionof thewakerakewasnotchangedduringarun. An investigationwasmadeatthe
beginningof thetestto determinehowmuchthewakeshiftedlaterallyfor agivenflapdeflectionangle
asangleof attackwasincreasedfrom0° up totheangleof attackfor stall. Thelateralshift in thewake
position,asmeasuredby thewakerake,overtheangleof attackrangestudiedwassmallenoughthat
thecompletewaketotalpressuredeficitcouldbecontainedwithin theregionof denselyspacedtotal
pressuretubeson thewakerakewith thewakerakein afixedposition. Thewakerakewasrotatedas
modelangleof attackwaschanged,to keepthewakerakelinedupwith thelocal flow directionas
determinedby thedirectionalprobesontherake. Thelateralpositionof thewakerakedid haveto be
changed,however,whentheflapdeflectionanglewaschangedon themodel.

As mentionedpreviously,themajorityof themeasurementsfor thetestweremadewith thePSI
8400systemandPSIelectronicpressuresensingmodules.A calibrationwasperformedonall the
pressuresensingmodulesprior to eachrun. Thecalibrationlinesandthereferencepressureline were
leak-checkedeverydayprior to anytesting.For everydatapoint,thePSI8400systemwasusedto
acquire6measurementsetsof 100sampleseach.Thedatain eachmeasurementsetwasaveragedand
thenthe6 measurementsetswereensembleaveraged.Eachdatapoint tookapproximately30seconds
to acquirewith thePSI8400system.Thetotal timeto acquireandprocesseachdatapoint,including
datareductionandwriting thedatato thedatabasefile, usingtheLabviewdataacquisitionsystemwas
just overoneminute. A typical run,includingamodelchangeandPSIsystemcalibration,took
between30and45minutesto complete.

Data Quality

Because the data from this test is to be used as a database for validating two-dimensional

computational results, time was spent ensuring that the flow over the model was two-dimensional.

One particular concern was the effect of the flap brackets on the flow over the flap. Tufts were applied

to the upper and lower surface of the flap to determine if the flap brackets were causing any three

dimensional flow. At a flap deflection of 29 ° and a flap gap of Zg/C = 0.03, wedge-shaped regions of

flow separation were observed on the upper surface of the flap behind each flap bracket as illustrated in

figure 17. The cause of the flow separation was traced to the cutouts in the flap where the bracket was

mounted. When these cutouts were filled in with clay, the regions of flow separation disappeared.

The separated flow on the flap was not evident in the pressure distributions measured on rows 1, 2,

and 3 on the flap because the pressure tap rows happened to lie between the regions of separated flow.

A comparison of lift coefficient versus angle of attack curves for the open and the filled cutouts is

shown in figure 18. Filling in the flap bracket cutouts shifts the lift coefficient curve up by ACt = 0.1.

All the data for this test was taken with the flap bracket cutouts filled in.

Data repeatability was assessed by comparing force and moment coefficient curves for different

runs of the same configuration. The lift coefficient was repeatable to within AC1 = _+0.005 for lift

coefficients below Clmax. Clmax was repeatable to within AC1 = +__0.01. The larger uncertainty in lift

coefficient at Clmax is due to unsteadiness in the onset of stall. Stall for this airfoil occurred when the

flow over the upper surface of the main element separated near the leading edge, causing a rapid

decrease in lift coefficient with increasing angle of attack. At Clmax, flow over the upper surface of the
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Figure 18. Comparison of lift coefficient versus angle of attack curves for the open and the filled-in

flap bracket cutouts. (Bf = 29 °, Zg/C = 0.03, Xol/C = 0.015)
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main element intermittently separated and reattached. Because the turbulent flow from the stalled

airfoil buffeted the wake rake severely, the angle of attack polars only extended far enough into stall to

define the maximum lift coefficient. When no flow separation was present on either the flap or the

main element, the drag coefficient was repeatable to within ACd = _+0.001 or __10 drag counts. If flow

separation was present over either the main element or the flap, the drag coefficient was repeatable to
within ACd = +0.003 or +30 drag counts. The pitching moment coefficient was repeatable to within

ACm = _+0.0004 for lift coefficients below Clmax. At Clmax the pitching moment coefficient was

repeatable to within ACm = +0.001.

Wake profiles were also measured behind selected configurations using the set of three seven-hole

probes mounted on the traverse rig. The seven-hole probe data was used to obtain an independent

check on the accuracy of the drag coefficients computed with the wake rake data. The seven-hole

probe measurements were made at the same location behind the model as the wake rake measurements.

Profiles were obtained for an entire angle-of-attack polar and drag coefficients were computed from the

measured profiles using Betz's formula. Additional profiles were measured with the seven-hole

probes at a position 0.067 chords aft of the flap trailing edge with the airfoil at 0 ° angle of attack.
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Figure 19. Comparison of drag coefficient versus angle of attack curves computed using wake rake

data and seven-hole probe data.

Figure 19 shows a comparison of drag coefficient versus angle of attack curve computed using

wake rake data with a similar curve computed using seven-hole probe data.

At an angle of attack of 0 °, there is a difference of 30 drag counts between the drag coefficient

computed from wake rake data and the drag coefficient computed from seven-hole probe data. The

difference in drag coefficient computed from seven-hole probe data taken one chord behind the airfoil

and data taken 0.067 chords behind the airfoil is about 10 drag counts. The drag coefficients obtained

from the wake rake data and the seven-hole probe data agree to within 10 drag counts for angles of

attack greater than 0 °.
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GOVERNING FLUID DYNAMICS EQUATIONS

The most general set of governing equations for problems in fluid dynamics are the Navier-Stokes

equations. Although the Navier-Stokes equations, as originally derived, are a mathematical expression

of the law of conservation of momentum in a fluid flow, it is common practice to include the equations

for conservation of mass and energy as part of the Navier-Stokes equation set. The equations account

for both spatial and temporal variations in mass, momentum, and energy of a fluid acting under the

influence of forces such as gravity and the forces generated due to the viscosity of the fluid. The

Navier-Stokes equations can be expressed in either integral or differential form. Exact, closed form

solutions to the Navier-Stokes equations do not exist except for special, simplified cases. The Navier-

Stokes equations are generally solved using numerical methods which require the flow domain to be

discretized into a computational grid. Numerical solutions of the full three-dimensional, time accurate

Navier-Stokes equations can be very costly to compute.

Subsets of the Navier-Stokes equations can be obtained by making simplifying assumptions

appropriate to the type of fluid dynamics problem being analyzed. Common examples of subsets of

the Navier-Stokes equations include the Reynolds-averaged Navier-Stokes equations, the

incompressible Navier-Stokes equations, the Thin-Layer Navier-Stokes equations, and the Parabolized

Navier-Stokes equations. The Navier-Stokes equations can also be simplified by assuming that the

fluid flow problem being analyzed is two-dimensional in nature. Further simplification of the

governing equations for fluid dynamics can be made by neglecting the effects of viscosity and heat

transfer. The particular fluid dynamics problem being analyzed will generally dictate what simplifying

assumptions can be made.

The form of the Navier-Stokes equations chosen to represent the fluid dynamics problem being

examined in this research is the two-dimensional Reynolds-averaged Incompressible Navier-Stokes

equations. The simplifying assumptions applied to the full Navier-Stokes equations and their impact

on the computed solutions will be discussed in the following sections. A brief overview of the

turbulence model used in the computations will be given. Finally, the scaling of the governing

equations and the generalized non-orthogonal coordinate transformation applied to the equations will
be covered.

Derivation of Governing Equations

The three-dimensional Navier-Stokes equations can be written as a set of five partial differential

equations expressing the conservation of mass, momentum, and energy. Using tensor notation, they
can be written as

o_(pui )c_p F - 0 (3a)
Ot 3x,

@+a [ r( .i au,]_z a. l }
_:_(_Ui) l-_(pUil'[j)--Pfi---'_iX i -'_Xj l/'_L_-_Xj "_- OXi ) 3 'J a#_JJ (3b)cgt oDxj

Ot
(3c)
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wherei, j, k = 1,2,3,J] represents the body force per unit volume acting on the fluid, Qh is the rate of

heat produced per unit volume by external agencies, and Fourier's law for heat transfer by conduction

has been assumed. The term rio is known as the Kronecker delta function. It has a value of 1 when i

=j, and is zero otherwise. The term Et is the total energy per unit volume and is given by

(4)

where e is the internal energy per unit mass. The second term in equation (4) represents the kinetic

energy of the fluid. The third term on the right hand side of equation (4) represents the potential

energy of the fluid due to the gravitational field.

An examination of the fluid dynamics problem being investigated in this research leads to several

assumptions which simplify equations (3a), (3b), (3c), and (4). For the flow over the two-element

airfoil being studied, there are no external heat sources so Qh can be set to zero. The only energy terms

which are significant in equation (4) are the internal energy and the kinetic energy of the fluid. The

experimental portion of this investigation was set up to simulate a two-dimensional flow over the

airfoil, as discussed in the section on experimental setup. Thus, the governing equations can be

simplified by writing them in two-dimensional form. Applying these simplifying assumptions to

equations (3) and (4) and substituting equation (4) into equation (3) yields the following set of

equations

(Sa)

(5b)

(5c)

where i, j, k = 1, 2.

Note that writing the governing equations in two-dimensional form strictly enforces the two-

dimensionality of the computed solution. In the experiment, however, the two-dimensionality of the

flow cannot be strictly enforced. Asymmetries in the model geometry along the span, hardware such

as flap brackets, and local surface irregularities can all lead to locally three-dimensional flows. When

flow separation occurs on the upper surface of the main element or flap in the experiment, the flow

field becomes more three-dimensional since the separation point typically varies somewhat along the

span of the airfoil. The turbulence in the experimental flow can have components in all three

dimensions, whereas in the computed solution, the turbulence is strictly two-dimensional. This can

lead to differences in the boundary layer profiles between experimental and computed results, which

can result in differences in the flow through the flap gap and thus the overall performance of the airfoil.

Using the two-dimensional form of the governing equations, however, still makes sense, despite

the potential differences between the experimental results and the computed results. Careful attention

to detail in the experimental setup can minimize many of the potential differences. A two-dimensional

numerical solution can be obtained considerably faster than a three-dimensional solution, allowing
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morecasesto be runandcomparedwith experimentalresults.Finally,theoverallobjectiveof this
researchmustbe remembered.Thegoalis tousetheexperimentalandcomputationalresultstogether
to try to developanunderstandingof theflow physicsassociatedwith lift-enhancingtabs. Thisgoal
doesnotrequireanabsolutematchbetweenexperimentalandcomputationalresults.Aslongasthe
lift-enhancingtabsproducethesametrendsandincrementsin theexperimentalandcomputational
results,bothsetsof resultscanbeusedtogetherto determinehowlift-enhancingtabswork.

Anotherconsiderablesimplificationof thegoverningequationscanbemadeby assumingthatthe
flow canbetreatedasincompressible.High-lift multi-elementairfoil configurationsareusedin low
speedapplicationssuchastakeoffor landing,wherethefreestreamMachnumberis generallybelow
0.3. At flow speedslessthanMach0.3 in air, theeffectsof compressibilityareverysmall. At a
positiveangleof attack,multi-elementairfoilswill havelocalregionswheretheflow velocityis higher
thanMach0.3andcompressibilitymaybeimportant,buttheseregionsaregenerallyconfinedto the
leadingedgeareaof thefirst element(slator mainelement).Otherresearchershaveobtainedgood
agreementbetweenexperimentalresultsandcomputationalresultsusinganincompressiblesetof
governingequations[20,21,22]. Theassumptionof incompressibleflow reducestheNavier-Stokes
equationsto asetof mixedelliptic-parabolicpartialdifferentialequationswhichcanbenumerically
solvedmoreefficientlythanthecompressibleNavierStokesequationsfor problemswherethefree
streamMachnumberis low. Thesizeof thetimestepthatcanbeusedin anumericalsolutionto the
compressibleNavier-Stokesequationsbecomesverysmallwhenthefree-streamMachnumberis less
than0.3,dueto stabilitycriteria. Thislimitationontimestepsizeis removedfor numericalsolutions
to theincompressibleNavier-Stokesequations.

In anincompressibleflow, density9 can be treated as a constant. This means the equation for

conservation of mass (la) can be written as

°_ui = o (6)

where i = 1,2. Equation (6) simply states that the divergence of the velocity field is zero in an

incompressible flow. If equation (6) is substituted into equation (5b) and the constant density 9 is

factored out, the following equation for conservation of momentum in an incompressible flow is

obtained.

o_(uiuj) 1 o_p 1 o_ ( o_ui o_uj'_

°_u_ t- )- _-----#_-- + -- i, j = 1, 2c)t c_xj p c_x_ p c)xj c?xj c_x_
(7)

An examination of equations (6) and (7) reveals another important benefit of the incompressible flow

assumption. Equations (6) and (7) form a closed set of equations for the unknowns p and ui if the

viscosity is considered a constant. The equation for conservation of energy is no longer required to

close the set of equations. This is true even if viscosity cannot be considered constant, as in the case

of turbulent flows. However, another equation must then be introduced to define the viscosity as

discussed below.

The aerodynamic performance of high-lift multi-element airfoil configurations is usually sensitive

to Reynolds number. The flight Reynolds number associated with these configurations can range from
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approximately2x106 to over 20x 10 6. Computational or experimental simulations of high-lift

configurations must match the flight Reynolds number in order to accurately predict aerodynamic

performance. At these Reynolds numbers, the flow over much of the configuration is turbulent. The

numerical grid required to fully resolve all the turbulent eddies in the flow would have to be extremely

fine, imposing unacceptable requirements for computer memory, disk space, and computation time.

The current approach for computing high Reynolds number turbulent flows is to perform a Reynolds

averaging of the Navier-Stokes equations by decomposing the dependent variables in the equations

into mean and fluctuating components and then time averaging the entire set of equations. This

process introduces new terms called Reynolds stresses into the equation set which are associated with

the turbulent motion. A turbulence model must be introduced to relate the Reynolds stresses to mean

flow variables and close the equation set.

In the standard Reynolds time-averaging approach [23], a time-averaged flow variable f is defined

as

1 ft,, +_t
7--_ttJ,o fdt (8)

The At used for the time-averaging process must be selected so that it is large compared to the

fluctuations in the flow variable due to turbulence, but small compared to the time period of any

unsteadiness in the mean flow field. This is generally not a problem, since the period of the turbulent

fluctuations is several orders of magnitude smaller than the period of any unsteadiness in the mean

flow. In this manner the high frequency fluctuations due to turbulence are averaged out, but the

relatively lower frequency variations in the mean flow are retained.

The dependent variables ui and p in equations (6) and (7) are replaced by the sum of a time-

averaged mean value and a fluctuating component.

B

-- p

Pi = Pi + Pi

(9)

Equations (6) and (7) are then time-averaged to yield the Reynolds Averaged Incompressible Navier-

Stokes equations. Note that the time average of a fluctuating component is by definition zero, but the

time average of the product of two fluctuating components is, in general, not zero. The equations for

the two-dimensional Reynolds-Averaged Incompressible Navier-Stokes equations can be written as

follows

8ui _ 0

ax/

(_(Uil_j ) "_" t bltxatui .i)aTii + _
at axa

_---_#/-_ +
p o3xi p dXj _ axj aXi )

(10)

(11)

Equation (11) can be rearranged to yield
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(12)

whichis amoretraditionalform of expressingthemomentumequation.Thelasttermon theright
handsideof equation(12) is knownastheReynoldsstressterm. TheReynoldsstresstermsrepresent
anapparentstressdueto thetransportof momentumby turbulentfluctuations.

Turbulence model

Equations (10) and (12) do not form a closed set of equations due to the addition of the unknown

Reynolds stress terms. Additional equations must be introduced to close the system. This is

accomplished by means of a turbulence model. Most of the turbulence models in common engineering

use today rely on an assumption known as the Boussinesq assumption. The Boussinesq assumption

relates the general Reynolds stress tensor to the rate of mean strain by means of a scalar turbulent or

eddy viscosity as shown in the following equation.

(13)

The term gT is the turbulent viscosity For incompressible flows, equation (13) reduces to the

following form.

_' t =_['_T ---'l---

--Puiuj l ¢_Xj t_Xi )

(14)

If equation (14) is substituted into equation (12), the momentum equation, after simplification,

becomes

\(aU i

au, a(uiu i) 1 ap
t- O-_--(V+ lolx j o_xi)] (15)

• _ VT) -- +--

o_t o_xi P o_xi o_x_

where the overbars on all the mean flow variables have been dropped for convenience. The unknown

Reynolds stress tensor has been replaced with a single unknown scalar quantity, the turbulent

viscosity. The turbulence model is then used to determine the value of this unknown quantity.

Turbulence models can be classified by the number of partial differential equations that must be

solved to yield the parameters necessary to compute the turbulent viscosity coefficient. The simplest

turbulence models are the zero-equation models. These models utilize algebraic relationships to

compute length and velocity scales of turbulence, from which the turbulent viscosity may be

computed. These models have the advantage of being simple to implement and computationally

inexpensive to use. However, they are limited in their generality. The models, or at least the

coefficients used in the model, have to be modified to be applicable to different types of flow

problems.
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Turbulencemodelsutilizing oneor morepartialdifferentialequationsto determinetheparameters
neededto computetheturbulentviscosityhavebeenformulatedin anattemptto createamoregeneral
model. Thepartialdifferentialequationsaregenerallyin theform of transportequationsfor parameters
relatedto turbulencesuchasturbulentkineticenergyK or the turbulence dissipation rate _. The

transport equations for a turbulence parameter can be derived from the Navier-Stokes equations. The

advantage of using one or more partial differential equations in a turbulence model is that the

parameters computed using a partial differential equation become functions of the global flow field,

rather than being functions only of the local flow field as is the case for zero-equation models. Once

the partial differential equations are solved, the dependent variables are used in empirical relationships

to compute the turbulent viscosity. The disadvantage of turbulence models that utilize partial

differential equations is that they are computationally more expensive to use than the zero-equation

models.

The turbulence model selected for this research work was the Spalart-Allmaras one-equation model

[24]. The Spalart-Allmaras model has been successfully used by other researchers to compute flow

fields associated with high-lift multi-element airfoils [21,22,25]. One advantage of the Spalart-

Allmaras turbulence model is that it does not require as fine a grid point spacing near the surface as

two-equation models like the K-e or the K-co models do [21]. Navier-Stokes solution algorithms

coupled with the Spalart-Allmaras model also seem to converge much faster than when they are

coupled with a two-equation model. A second one-equation model, the Baldwin-Barth model [26],

was also used for comparison purposes and the results of the comparison are discussed later in this

report. Only the Spalart-Allmaras model will be discussed here. The development of the Baldwin-

Barth model is very similar.

In the Spalart-Allmaras turbulence model, the turbulent viscosity is defined by the following

relationships.

Vt = Vfvl (16)

Z 3 (17)
3

f vl Z 3 + Cvl

z = - (18)
V

The variable _, is chosen to satisfy the transport equation given by

5[ _21[Df/=Dt G, [1 - ft2]Sv-]-- V.((V-['-_])VV)-J-Cb2(VV) - Cwlfw ----E:;qL_J

(19)

The term S is defined as

=- S +--5-_ f vz

where the functionfv2 is given by

(20)
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fvz =1 Z (21)
1 + zfvl

the variable S in equation (20) is the magnitude of the vorticity and d is the distance to the closest wall.

The functionfw is given by the equation

F 1 + C6w3 ] _

Sw: 4-3] (22)

where

g =r+Cwz(r 6- r) (23)

and

_' (24)
r -= _tcZdZ

The Spalart-Allmaras turbulence model has a transition model built in which gives a smooth
transition from laminar flow to turbulent flow at a user-defined transition location. The termsftl and

ft2 in equation (19) are transition functions and are given by the following equations.

( (-Or r -2 )f . =c.g, exp -c,2-SUrta +g_*]

ft2 =CtzeXp(--Ct4_(, 2 )

gt -- rain 0.1, co,Ax,

(25)

(26)

(27)

The term dt is the distance from a field point to a user-defined transition point on a wall. The cot term

is the wall vorticity at the transition point. AU is the difference between the velocity at a field point and

the velocity at the transition point. Axt is the grid spacing along the wall at the transition location.

Empirically derived relationships and direct numerical simulations (using the non-Reynolds-

averaged Navier Stokes equations) of a variety of different shear flows are used to calibrate the

turbulence model. The various functions and constants used in the Spalart-Allmaras formulation were

chosen to yield a model which best simulates the available data on turbulent shear flows. The values

of the constants used in equations (16) through (27) are listed in equation (28).

Boundary conditions and initial values for _' must be set before equation (19) can be numerically

solved. At no-slip wall boundaries, _' is set to zero. At outflow and slip wall boundaries, the normal

derivative of _' is set to zero. The ideal value of _ in the free stream (away from shear layers) is zero.

The initial value of _' at all field points is typically set equal to the free stream value. The solution to

equation (19) is advanced to the next iteration level using an implicit solution procedure. The updates

of the velocity field from the Navier-Stokes solution algorithm and turbulent viscosity from the

turbulence model are computed in an uncoupled fashion at each time step or iteration.
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O'=--

3

_'= 0.41

Cbl = 0.1355

Ch2 = 0.622

_ Cbl

C_1 -- 1(--T +

Cw2 = 0.3

Cw3 = 2.0

c,,I = 7.1

% = 1.0

C,2 = 2.0

c,3 = 1.2

c,4 =0.5

(1 + Cb2 )

(7

(28)

Scaling and Transformation of the Governing Equations

It is common practice to scale the dependent and independent variables in the Navier-Stokes

equations so that all variables are in a non dimensional form. The scaling process gives rise to several

non dimensional parameters which can be used to characterize the flow field being modeled. These

include the Reynolds number, the Mach number, and the Prandtl number. When the Navier-Stokes

equations are solved in their non dimensional form, the Reynolds number, Mach number, and Prandtl

number can be used to set the scale of the flow being simulated. A typical scaling of the governing

equations is given by the set of equations listed below.

_= t

/ U r(f )

_ P - Pr<r
U 2P r4

(29)

If the scaling given in equations (29) are applied to the governing equations (10) and (15), the

following set of non dimensional governing equations are obtained.
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c_---L= 0

£_Hi ¢_(UiffLJ ) _P F

37 C_Xj _Xi 3Xj

i = 1, 2 (30)

i, j = 1, 2 (31)

Equations (30) and (31) represent the non dimensional form of the two-dimensional Reynolds-

averaged Incompressible Navier-Stokes equations in a Cartesian coordinate system. The overbars on

the mean variables resulting from the Reynolds averaging have been dropped for convenience. From

this point on, all variables will be treated as non dimensional and the hats will also be dropped.

The governing equations are generally written in conservation law form for computational fluid

dynamics (CFD) applications. A partial differential equation written in conservation law form has the

property that the coefficients of the derivative terms are either constant or, if variable, their derivatives

do not appear in the equation. The main advantage of the conservation law form of the equations is

that numerical difficulties are avoided in situations where the coefficients may be discontinuous, such

as flows containing shock waves. Equations (30) and (31) can be combined into a single vector

equation and expressed in conservation law form as shown below.

c3Q_gt_- _-_-(F- Fv)+_ (G-G_)=Ocgx (32)

where

0Q= U 1

kUz

[u' 1F= u_+p G=

kU,U2 J
ru ]U 1bl 2

Lug+p

0

\ G_U,

2(v + )-g-/

,( _?u, c_u2

Gv

]

0

2(v+ v,)
@

(33)

In equation (32), F and G are the convective flux vectors and Fu and Gv are the viscous flux vectors.

Equation (32) is an expression of the Navier-Stokes equations for a Cartesian coordinate system.

However, for most applications a Cartesian coordinate system is not a suitable choice of coordinate

systems on which to apply a finite difference scheme for numerically solving the governing equations.

The finite difference scheme becomes quite complicated and application of boundary conditions

becomes difficult because the values of x and y are generally not constant along grid lines. This

problem is resolved by applying a general non orthogonal transformation process to the governing

equations. The transformation process maps a physical domain in Cartesian coordinates to a

computational domain in generalized coordinates _ and 1"1. If the computational domain is represented

with a finite difference grid, the values of _ and _1are constant along grid lines and the grid lines are
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uniformly spaced.Theresultingtransformedgoverningequationsarethenvalid in thecomputational
domain.Applicationof afinite differenceschemeto numericallysolvethetransformedgoverning
equationsin thecomputationaldomainisgreatlysimplified.

Usingthemethodgivenin reference[23], thegeneralnonorthogonaltransformationprocessis
accomplishedby assuminggeneralizedcoordinatesof theform

_ = _(x,y) (34)

Thechainruleof partialdifferentiationis usedto expresspartialderivativeswith respectto x and y in

terms of derivatives with respect to _ and 1"1.

o o 9

=ix + ,7xa,7 (35)

In equation (35) abbreviated partial derivative notation has been used (i.e. ix c_
- -_x )" The terms _x,

_y, Tlx, and Tly are known as the metric terms of the transformation. In order to complete the

transformation, the metric terms must be defined. This can be done by writing expressions for the

total derivative of { and rl.

d_ = _xdx + _dy (36)

dr I = rlxdx + rl,.dy

Equation (36) can be expressed in matrix form as follows.

d_ fix _;.JLdyJ

Expressions for the total derivatives of x and y can also be written in matrix form.

dy y¢ y.JLd#J

Comparing equations (37) and (38), the following relationship can easily be derived.

-1

X_

Evaluating the right hand side of equation (39) leads to the following expressions for the metric terms.
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_x = J Y,)

4:, = -Jx 

rlx = _ J Y_

rl:. = J x¢

(40)

The term J in equation (40) is the Jacobian of the transformation and is given by

1 1

J- _i Y_ - _ xoy_) (41)
x_ (x¢y_ -

The metric terms can be easily evaluated using equation (40) if analytical expressions for the

inverse of the transformation exist (i.e. x = x(_, 11), y = y(_, _)). For complex finite difference grids,

analytical expressions for the inverse of the transformation generally do not exist and the metric terms

must be evaluated by using finite difference approximations in equation (40). If the grid varies with

time, then additional constraints on the evaluation of the metric terms using finite difference

approximations are imposed by the geometric conservation law of Thomas and Lombard [27]. Since

the grids used in this research are not varying with time, this is not a concern here and will not be

covered further. The specific differencing schemes used to evaluate the metric terms will be discussed

in the next section.

The expressions given in equation (35) for the partial derivatives with respect to x and y can be

substituted into equation (32) to transform the governing equations into the computational domain.

a Cv)+ a cv)=oc)Q t_¢x ( F - rv ) + rlx rl,. --_ (Gc?t --_ ( F- - . -
(42)

If equation (42) is multiplied by J- 1 and the chain rule for differentiation is used, equation (42) can be

rewritten as follows.

(43)

If the relations defined in equation (40) are substituted into the last four terms of equation (43), the last

four terms cancel each other out. As mentioned earlier, the grids used in this research do not vary with

time, so that the term involving the derivative of j-1 with respect to time is zero. Thus equation (43)

can be reduced to
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(44)

In order to simplify equation (44) further, the following definitions are made.

1

O=7Q
1

1

¢ =7('xF_+,,<)

(45)

Substituting the relationships in equation (45) into equation (44) results in the following vector

equation for the conservation form of the two-dimensional Reynolds-averaged incompressible Navier-

Stokes equations expressed in a generalized non orthogonal coordinate system.

°10 +__(___v)+ °l ((__(_v)= 0 (46)at

The viscous flux vectors in equation (46) contain derivatives with respect to x and y that must also be

transformed to the computational domain. The individual vectors in equation (46) are defined below.

,[0]=n Ul0 j
LU_J

F Lu,+_,.2 1
1 2 "

[ r'/xul + flu 2 ]
| 2 "_=--:/,x(U,+,,)+,_.u,_/
a 2"

[17xlAlU2 + lJy(bt2 + P) j

0

(¢_+ ¢,)-5-( t_x,x+Z<., ,.)-_ +¢x<.a¢ ¢_":-_

(47)

dV -- m

(v+v,)

J

0

_Ou, I au, au_ ?us_ +L,,, +,xrT,
(2_/r/u + g:.r/,)--_- + (2r t + r/,,, Or/ " W -N

(_x,/+2_,,,)__+(,_+2 _,a._ . au,+ au,
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Thevectorequation(46)representsthesetof equationsgoverningthefluid dynamicsof thetwo-
dimensionalflow field to bestudiedin thisresearch.Thenumericalschemeusedto solvethesetof
equations(46)will bediscussedin thenextsection.
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NUMERICAL SOLUTION OF GOVERNING EQUATIONS

The computer code chosen to perform all the computations presented in this research was

INS2D-UP. INS2D-UP was developed at NASA Ames Research Center by Rogers and Kwak

[28,29,30,31 ]. The code numerically solves the two-dimensional Reynolds-averaged Incompressible

Navier-Stokes equations developed in the previous section by making use of the method of artificial

compressibility, first introduced by Chorin [32]. INS2D can be used to compute time-accurate

solutions to unsteady flow problems, as well as steady-state solutions. All of the computations

presented in this report were performed using the steady-state flow option. A number of turbulence

models are available in INS2D, including the Baldwin-Lomax algebraic model, the one-equation

Baldwin-Barth model, the one-equation Spalart-Allmaras model, and the two-equation k-c0 model. In

addition, INS2D includes several different schemes for solving the linear system of equations that

result from the implicit finite difference algorithm.

In this section, a brief description of the method of artificial compressibility will be given, followed

by a development of the finite difference equations used to approximate the governing equations. A

description of the flux-difference splitting scheme used to compute the convective terms will also be

given. The linear system of equations that result from the implicit finite difference algorithm will be

derived. Finally, the characteristic relations used to update boundary conditions will be covered.

Method of Artificial Compressibility

The two-dimensional incompressible Navier-Stokes equations are a set of mixed elliptic-parabolic

partial differential equations. This means that disturbances must propagate to all points in the flow

field in a single time step. The elliptic nature of the equations requires an iterative solution scheme to

solve the equations at each time step. One approach to solving the two-dimensional incompressible

Navier-Stokes equations is to recast the equations into a parabolic transport equation for vorticity and

an elliptic Poisson equation for stream function. These equations are solved using a time-marching

scheme. Initial conditions for vorticity and stream function are specified at all grid points. The

vorticity transport equation is then solved at all grid points to advance the values of vorticity to the next

time step. An iterative scheme is used to solve the Poisson equation for new values of stream function

at all grid points using the new values of vorticity. The new values of stream function can be used to

compute the components of velocity at each grid point. A second Poisson equation must be solved to

determine the pressure at each grid point for each step. The boundary conditions are updated based on

values of vorticity and stream function at interior grid points and the process is repeated for the next

time step. This same procedure can be used to compute steady flows also. In this case, the solution is

marched in pseudo-time until steady-state values for vorticity and stream function are achieved. The

Poisson equation for pressure in a steady flow is only solved once, after vorticity and stream function

have reached their steady-state values.

There are several disadvantages of using the vorticity-stream function formulation to solve the two-

dimensional incompressible Navier-Stokes equations. The solution of one or two Poisson equations at

each time step is computationally expensive. Because the pressure is computed at the end of each

iteration, it is only indirectly coupled to the velocity field as the solution is advanced in time.

However, the biggest drawback of the vorticity-stream function formulation is the difficulty in

extending the method to solving the three-dimensional incompressible Navier-Stokes equations. A

dual stream function, which is the three-dimensional analog to the two-dimensional stream function,

must be used to extend the technique to three dimensions.
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In the artificial compressibility method, the continuity equation is modified by adding an artificial

compressibility term which vanishes when the steady-state solution is reached. Thus the steady-state

solution still satisfies the requirement of a divergence-free velocity field as required by the

incompressible continuity equation. The modified continuity equation can be written as

where/5 is the artificial density and I: is a pseudo-time which is analogous to real time in a

compressible flow. Equation (48), together with the conservation of momentum equation, is marched

in pseudo-time until a steady-state solution is achieved. For unsteady flow fields requiring time-

accurate solutions to the incompressible Navier-Stokes equations, the solution is advanced in physical

time by iterating in pseudo-time until a divergence-free velocity field is obtained at each new physical

time level. As mentioned earlier, INS2D-UP can be used to perform either steady-state or time

accurate computations. All of the computations performed for this research were steady-state in

nature. Thus only the steady-state formulation of INS2D-UP will be covered here. The differences

between the steady-state and the time accurate formulations are minor and the reader is referred to

reference [30] for details on the time-accurate formulation.

The addition of the artificial compressibility term to the continuity equation changes the

incompressible Navier-Stokes equations from a mixed set of elliptic-parabolic partial differential

equations to a mixed set of hyperbolic-parabolic partial differential equations. This allows the

equations to be solved using a marching scheme and avoids the need for solving a Poisson equation at

each step. The hyperbolic nature of the equations also permits the convective fluxes to be upwind

differenced rather than central differenced. Schemes employing central differencing of the convective

fluxes require artificial dissipation to be explicitly added in order to damp out numerical oscillations

resulting from the non linearity of the convective fluxes. The amount of dissipation added has a direct

effect on the final solution and must be adjusted to fit the specific application being simulated. Use of

an upwind differencing scheme for the convective fluxes avoids the difficulties associated with central

differencing. The upwind differencing of the convective fluxes is a way of following the propagation

of the artificial waves generated by the artificial compressibility. Upwind differencing is a naturally

dissipative scheme which damps out the numerical oscillations caused by the nonlinear convective

fluxes. An additional benefit of using upwind differencing of the convective fluxes is that the scheme

contributes to terms on the diagonal of the Jacobian of the residual, making the scheme nearly

diagonally dominant. This helps improve the convergence rate of the algorithm used to solve the

system of linear equations.

The artificial density can be related to the pressure by an artificial equation of state as shown

below.

p = ]3/5 (49)

The term [3 in equation (49) is the artificial compressibility factor and is analogous to the square of the

speed of sound in the physical domain. The value of [3 governs the rate at which waves propagate

throughout the domain. If equation (49) is substituted into equation (48), the following modified

continuity equation is obtained.
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(50)

Thedirectcouplingof thepressurefield andthevelocityfield providedby theartificialcompressibility
methodis evidentfromequation(50). Replacingthestandardincompressiblecontinuityequationin
thevectorequation(46)with equation(50)yieldsthefollowing vectorequation.
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(51)

Finite Difference Approximations

In order to numerically solve the set of governing equations expressed in equation (51), all of the

partial derivatives must be replaced by finite difference approximations. A finite difference

approximation is an algebraic expression based on a Taylor series expansion about a point, which

approximates the value of the partial derivative at that point. A wide variety of finite difference

approximations of differing orders of accuracy can be derived for a given partial derivative. The finite

difference approximations used in the INS2D-UP code will be discussed in the following sections.

The approach outlined here follows the development by Rogers [31].
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Metric termsm All of themetrictermsthatresultedfrom thetransformationof thegoverning
equationsto ageneralizednonorthogonalcoordinatesystemmustberepresentedwith finitedifference
approximations.Themetrictermsappearinginequation(51)arenotevaluateddirectlyusingfinite
differenceapproximations.Rather,thequantitiesx{, x_, y_, and Yn are evaluated using finite

difference approximations. The results are then averaged and substituted into equations (40) and (41)

to obtain values for the metric terms in equation (51). This method of computing the metric terms

ensures free-stream preservation on a stationary grid. A second-order accurate central difference

approximation can be used to represent the partial derivatives as shown in the example below.

(52)

Similar expressions can be written for the remaining partial derivatives. These expressions are

evaluated for the entire finite difference grid. The metric terms are then defined as illustrated using the

following averaging procedure.

J x

Since the grids do not vary with time, this process only needs to be done once to define the metric

terms for the entire computation.

Convective flux terms-- The convective flux terms are represented by the vectors /_ and G in

equation (51). If the contravariant velocity components U1 and U2, defined as

(54)

are used in the convective flux vectors, then /_ and G can be written as follows.

P = --=lu,U, + _xPl

J  uy, +  ,pJ [ u2U 2 + rlypJ

(55)

The Jacobian matrix of the convective flux vector/_ is then given by

I o fi x ]
9P 1 ix _xb/1 "{- UI _yb/1 (56)
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A similarexpressioncanbewrittenfor theJacobianmatrixB of (_. The Jacobian matrices A and B

can be diagonalized by applying a similarity transformation of the form

A = XAAAX a' (57)

where XA is the matrix of eigenvectors of A and AA is the diagonal matrix of eigenvalues ofA. A

similar process is followed for matrix B. The matrices AA and AB are defined as

o 0] 0 0o1A A = U 1 "}-C A 0 A B = U 2 + c B
J

0 U 1 - c A 0 0 U 2 - c B

(58)

where

CA=jt 1

Cs=j[ 2

(59)

Note that CA and C8 are always positive and will always be larger in magnitude than U1 and U2

respectively. Thus the second eigenvalue for A and B will always be positive and the third eigenvalue

will always be negative. This fact will be used to bias the differencing of the convective flux vectors

based on the eigenvalues of the convective flux Jacobians.

The upwind differencing scheme will be developed for one coordinate direction and then applied to

each coordinate direction separately. The derivative of the convective flux vector/_ with respect to

can be approximated by

-_ i,j A_

(60)

where

(61)

The terms (9i+1/2, j and _)i-1/2, j are dissipation terms. If _)i+1/2, j and _)i-1/2, j are set to zero, then

equations (60) and (61) represent a second-order central-difference scheme. If the terms 0i+1/2, j and

_)i-1/2, j are defined as
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_)i+l/2,j = A_I/2,j - L_I/2,j

_+

(62)

then a first-order upwind scheme results. The terms A/_e represent the flux difference across positive

or negative traveling waves. These terms are defined as

-+ e _+ -_-Ai+1,2,=(o,+,,2,)A0,+,,2,
_+ n +

AF'_-I/2,j = (Qi-l/2,j)AOi-l/2,j

(63)

where

(64)

and

=1 0

Qi-l/2,j 1= +o,._,,,)
(65)

The splitting of the Jacobian matrix A is accomplished by using equation (57) together with the

following equation.

+ 1 AA==_( _+IA_) (66)

The A_ diagonal matrix contains only positive eigenvalues and the AT_ diagonal matrix contains only

negative eigenvalues.
Higher order upwind difference schemes can be created by making suitable choices for the Oi+u2,j

and 4)i-u2, j terms. INS2D-UP includes a third-order and a fifth-order accurate upwind difference

scheme and allows the user to designate which scheme should be used by means of a parameter in the

input file. Implementation of the higher-order schemes does not significantly increase the computation

time because all the flux differences A ,_+- are computed for an entire grid line at a time. The main

difficulty with using upwind schemes of greater than first order accuracy is that a reduction of order is

required at the boundaries. This problem is handled in INS2D-UP by using the following for the

0i+1/2, j and _)}-1/2, j terms adjacent to boundaries.

Oi+l/2,j =C

Oi-l/2,j E

[AI_/+I/2,j- A_;I/2,j]
(67)
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For _ = 0, the scheme degenerates to a second-order central-difference approximation at the boundary.

If e = 1, the scheme becomes the first-order upwind difference scheme given by equation (62). By

using a small value for e, dissipation is added to the central difference scheme, suppressing numerical

oscillations at the boundary and maintaining near second-order accuracy. The default value
recommended in INS2D-UP is _ = 0.01.

Viscous flux termsm The partial derivatives of the viscous flux terms /vv and Gv in equation

(51) must also be approximated using finite difference approximations. A second-order accurate

central difference scheme is used in INS2D-UP to approximate the partial derivatives of the viscous

flux terms. The finite difference expressions for the partial derivatives of/3 v with respect to _ and G_

with respect to rl can be written as

-bT)i,j

(( vlij+l( vli,1)
-5-h-,),,,-- 2A,

(68)

Note that the turbulent viscosity appearing in the viscous flux vectors must be computed for the entire

grid at each step in pseudo-time using the turbulence model.

Pseudo-time derivativesm Since equation (51) is solved by using a marching scheme in

pseudo-time until a steady-state solution is obtained, accuracy in pseudo-time is not required and a

first-order implicit Euler differencing scheme can be used to represent the partial derivative of Q with

respect to pseudo-time "_. The use of an implicit differencing scheme eliminates the restriction on step

size in pseudo-time that exists for an explicit scheme due to stability criteria. Equation (51) is first

rewritten as

_90 _ R (69)

where

(70)

is referred to as the residual vector. Applying the implicit Euler scheme to equation (69) yields

Q"+'-Q"- R .+1 (71)
JAz

where

42



Q= J0 (72)

The right hand side of equation (71) can be written as a Taylor series expansion in time and truncated

after the first two terms to linearize it. If the chain rule for partial differentiation is also used, then the

right hand side of equation (71) can be expressed as

R "+' =R"+ I,O'v) _c3Q) _.o_z)

R "+' = R" +_. OQ)

(73)

If equation (73) is substituted back into equation (71) and the terms are rearranged, the following linear

system of equations results

[j__ ( 0R'_nT, ,,+1 Q,, -R"I+t-_) J[Q - )-
(74)

Equation (74) represents the linear system of equations that must be solved to obtain the steady-

state flow field on the computational domain. The Jacobian of the residual vector R on the right hand

side of equation (74) can be very expensive to form for each iteration. Therefore, INS2D-UP utilizes

approximate Jacobians of the flux differences to form the banded matrix represented by the Jacobian of

the residual vector. The detailed expressions for the elements of the approximate Jacobian of the

residual vector can be found in reference [31 ].

As mentioned previously, INS2D-UP provides a number of different schemes for solving the

linear system of equations represented by equation (74). The method used for the present research is

the Generalized Minimal Residual or GMRES method, which is described by Rogers [33]. Rogers

notes that the convergence of the GMRES method is dependent on the eigenvalue distribution of the

matrix being solved. Rapid convergence requires the system of equations to be preconditioned. The

preconditioner used INS2D-UP is an Incomplete Lower-Upper (ILU) factorization scheme with zero

additional fill. In the study conducted by Rogers [33], the GMRES with ILU preconditioner

outperformed point relaxation and line relaxation solution schemes by a factor of between 2 and 9 for a

variety of different cases. Typical solution times for the grids used in this research are given later in

this paper.

Characteristic Relations for Updating Inflow/Outflow Boundary Conditions

Boundary conditions are required at all boundaries of the computational domain in order to obtain a

solution to the governing equations on the computational domain. Boundary conditions at no-slip

surfaces, slip surfaces, and at the interfaces between grids of a composite grid will be discussed in the

next section. The boundary conditions used for inflow and outflow boundaries in INS2D-UP are

based on the method of characteristics. The use of the artificial compressibility formulation introduces

finite-speed waves in the computational domain which are governed by the equations
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`gT `94

for waves traveling in the _ direction and

for waves traveling in the 77 direction. The characteristic relations will be developed here for the

direction, noting that similar results are obtained for the 77 direction. Using equations (54) and (55),

equation (75) can be rewritten as

_ `gQ `gQ
`90 3F 3Q a ---XAAAXA 1 (77)
`9"r `gQ `94 `9_ c9_

Multiplying both sides of equation (77) by XA a yields

`gQ
Xa' O30 AAXA' (78)

If the XA _ matrix were moved inside the spatial and time derivatives, the result would be a system

of independent scalar equations known as the characteristic equations, each having the form of a wave

equation. The sign of the eigenvalues determine the direction of travel of each of the characteristic

waves. Information is propagated by the characteristic waves in the direction dictated by the sign of

the eigenvalues. For example, at an inflow boundary in a subsonic flow, there are two characteristic

waves traveling in the positive direction and one traveling in the negative direction, corresponding to

the two positive and one negative eigenvalues (see equation 56). The characteristic wave traveling in

the negative direction brings flow field information from the interior of the computational domain to the

boundary. Thus at an inflow boundary in a subsonic flow, two elements of the Q vector can be

specified and the third is computed using a characteristic relation.

For an outflow boundary in a subsonic flow, there are again two characteristic waves traveling in

the positive direction and one in the negative direction. In this case the two characteristic waves

traveling in the positive direction bring flow field information from the interior of the computational

domain to the boundary. Thus, at an outflow boundary in a subsonic flow, one element of the

vector can be specified and the other two are computed using the characteristic relations.

Equation (78) can be generalized to apply to either inflow or outflow boundaries by multiplying

both sides of the equation by a diagonal selection matrix L which has an entry of 1 in the position of

the eigenvalues to be selected for a given boundary and zeros elsewhere. Thus equation (78) becomes

LX A, `90__._ LAAXA _ `gQ (79)
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If thepsuedo-timederivativein equation(79)isreplacedwithanimplicit Eulerdifferencingscheme,
equation(79)canbewrittenas

LX_----_l+ LAAX_l _-_I(Qn+a-Qn)=-LXA10QnJA'c 0_
(80)

Equation (80) provides an implicit means of updating boundary conditions at inflow and outflow

boundaries. However, boundary conditions must be supplied for all the diagonal elements of the L

matrix which have a value of zero. This can be incorporated into equation (80) by defining a vector £2

which contains a boundary condition corresponding to each diagonal element of the L matrix which

has a value of zero. The remaining elements of the £2 vector are zero. Note that since the elements of

the £2 vector are held constant in time, the following relationship holds true.

0- O.Q _ o:?£2OQ _ 0£2 _ 0 (81)
0"c OQ O'c OQ

Substituting equation (81) into equation (80) yields

LXA + LAAXA1 _ + 0£2 "_, n+l OQ n-5-61/Q (82)

which can be used to implicitly update the elements of the Q vector at any inflow or outflow boundary

with the proper choice of L and £2.. The specific choices used for the L and £2. elements in the present

study will be discussed in the next section.
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COMPUTATIONAL GRID GENERATION AND BOUNDARY CONDITIONS

Generating the two-dimensional computational grid for a multi-element airfoil can be a difficult

process. The goal is to generate a computational grid which has sufficient resolution to capture the

pertinent flow features. In the flow field around a multi-element airfoil, the important features include

the wake regions from the main element, the flap elements, and the slat, the cove regions on the main

element or the flaps where recirculating flow may exist, and the gap region between elements where

confluent boundary layers are usually present. The grid density should be such that further increases

in grid density do not change the solution.

There are two main types of finite-difference grids in general use for performing numerical

solutions to the Navier-Stokes equations: unstructured grids and structured grids. Unstructured two-

dimensional grids are essentially made up of clouds of grid points in space. Typically, every grid

point is joined to neighboring grid points to form triangular cells. There are several advantages to

using unstructured grids. Grid points can be easily clustered in regions of the computational domain

where detailed flow features need to be resolved. Multiple independent closed surfaces can be easily

represented within the computational domain using a single grid. There are also some disadvantages to

using unstructured grids. A large number of grid points are required to adequately resolve boundary

layer flows, due to constraints on the aspect ratio of the triangular elements. Most algorithms for

numerically solving the Navier-Stokes equations are written for structured grids and must be modified

to work with unstructured grids. Solution algorithms for the Navier-Stokes equations on unstructured

grids are slower and require more memory than corresponding algorithms for structured grids.

An example of a structured two-dimensional grid for a cylinder is shown in figure 20. It is

composed of i radial grid lines andj circumferential grid lines, forming an ixj mesh. If the i grid lines

are perpendicular to the j grid lines everywhere within the grid, the grid is classified as an orthogonal

Figure 20. Example of a two-dimensional structured O grid around a cylinder.

grid. C grids, O grids, and H grids are common examples of structured grids. Two-dimensional

structured grids around a single body, such as an airfoil, are easy to generate. Their regular structure

simplifies the numerical algorithms used to solve the Navier-Stokes equations, leading to lower
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memory requirements and faster solution speeds. One of the disadvantages of structured grids is that it

is difficult, and in many cases impossible, to represent two or more closely spaced independent closed

surfaces, such as a multi-element airfoil, within the computational domain using a single grid. There

are, however, several ways to combine multiple individual structured grids into a single composite

computational grid.

One way to patch grids together is by means of the chimera scheme [34]. In the chimera scheme,

one grid can be imbedded within another, as shown in figure 21. A hole boundary is defined in the

outer or parent grid to allow the inner grid to be imbedded. The grid points from the outer grid

contained within the hole boundary can be 'blanked out" so that they are ignored in the Navier-Stokes

solution algorithm. The hole boundary becomes a physical boundary for the outer grid. The hole

boundary must be completely contained within the outer boundary of the imbedded grid so that

boundary conditions can be interpolated from the inner grid to the hole boundary grid points.

Likewise boundary conditions for the outer boundary grid points of the imbedded grid are interpolated

from the outer grid. In this manner, several relatively simple structured grids can be combined to

create a complex composite grid.

The choice of grid type to be used for this investigation was dictated by a number of factors. The

large number of configurations to be computed to generate the computational database made solution

speed an important consideration. The need to parametrically vary flap position relative to the main

element also had an impact on the choice of grid type. If an unstructured grid were used, it would

have to be completely regenerated every time the flap position was changed. By using the chimera

scheme with structured grids, the individual grids can be generated once and the flap grid can then be

Figure 21. Example of airfoil grid imbedded in outer tunnel grid using the Chimera scheme.
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imbedded in the main element grid in different positions. These factors dictated the use of the chimera

scheme to combine several simple structured grids into a composite grid representing the NACA
632-215 ModB airfoil in the NASA Ames 7- by 10-Foot Wind Tunnel. In the following sections, the

programs used to generate and combine the grids are discussed briefly and the grids used for the

present computations are described in detail. The boundary conditions used for each grid and in

particular the boundary conditions used to model the lift-enhancing tabs are also discussed. Finally,

the results of a grid sensitivity study are presented.

Surface Grid Generation

The first step in the grid generation process is to create the surface grids. A program called

SURFGEN2D was written to generate surface grids for the main element and the flap element.

SURFGEN2D is based on the surface grid generation routines used in the potential flow panel code

PMARC [35]. A set of (x,z) coordinates representing the surface are read in from a file and cubic

splines are fit through the data. Nodes or break points can be specified at any of the points in the

original set of coordinates. A break point is always required at the end of the coordinate set. At each

break point the user must specify the number of grid points and the spacing of the grid points between

the current break point and the previous one, or the beginning of the coordinate set if there is no

previous break point. In addition, the slope of the cubic spline fit must be specified as continuous or

discontinuous across each break point. The grid point spacing options available within SURFGEN2D

include equal spacing, half cosine spacing with the smallest spacing at current break point, half cosine

spacing with the smallest spacing at the previous break point, full cosine spacing, and a spacing

algorithm developed by Vinokur [36] with the grid point spacing specified at both ends of the region

between the current break point and the previous break point. The output from SURFGEN2D is a

surface grid file which is then used to generate a two-dimensional finite difference grid.

Two-Dimensional Finite Difference Grid Generation

The grid generation program HYPGEN [37] was used to generate the main element and flap grids.

HYPGEN is a hyperbolic grid generation program which requires a surface grid as input. Both two-

dimensional and three dimensional grids can be generated with HYPGEN. The finite difference grid

is generated in a direction normal to the surface using the solution to a set of hyperbolic partial

differential equations. The program allows multiple zones to be defined in the grid generation process,

with the number of points, the size of the region, and the stretching options identified for each zone.

The stretching options include exponential stretching with initial spacing at the beginning of the region

specified, hyperbolic tangent stretching with grid spacing specified at one or both ends of the region,

exponential stretching with variable grid spacing at the beginning of the region, hyperbolic stretching

with variable grid spacing at one or both ends of the region, and user-defined stretching. HYPGEN

also allows many different types of boundary conditions to be imposed at the boundary of the grid.

The boundary of the generated grid can be free-floating (i.e. no constraint is applied), constrained to a

constant x, y, or z plane, constrained in two coordinates and free in the third, or periodic with the first

and last grid point in the periodic direction coincident. Several other types of boundary conditions can

be imposed at the boundary of the grid to handle special cases such as a singular axis point. HYPGEN

also has several input parameters that are used to control the smoothness and orthogonality of the

generated grid. Guidelines for setting these parameters are given in the HYPGEN users manual, but
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theoptimumsettingsfor aparticulargrid areproblem-dependentandmustbedeterminedonatrial-
and-errorbasis.

Composite Grid Generation

Once the individual two-dimensional finite difference grids have been generated, they must be

combined into a single composite computational grid using the chimera scheme. This is accomplished

by using a program called PEGSUS [38]. PEGSUS reads in the individual grids to be combined and
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Composite grid prior to removal of hole points

Figure 22. Example of imbedding one grid within another.
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afile of userinputswhichtell PEGSUShowto combinethegrids. In thesimplestcaseof combining
two grids,theusermustidentify whichgrid is the imbeddedgrid andwhichgrid is theoutergrid. The
scale,positionandorientationof theimbeddedgrid within theoutergrid is thendefinedin thatorder.
Theimbeddedgrid is thenpositionedwithin theoutergridby PEGSUSasshownin figure 22.

Thenextstepperformedby PEGSUSisto identifytheholesandinterpolationboundarypoints
within thevariousgrids. PEGSUSprovidesthreewaysto defineholeswithin grids. Two of these
methodsareindirectmeansof definingholesandthethird is adirectspecificationof thegrid points
thatdefinethehole. Theindirectmeansof definingholesin agrid arethemorecommonlyused
methods,sincethedesiredhole isgenerallyirregularin shapeandthegridpointswithin theholeare
not generallyknownbeforehand.

Thefirst methodof definingholesin agridis to defineasurfaceor setof surfaceswithin the
imbeddedgrid whichcut ahole in theoutergrid. For thecaseillustratedin figure 23,thej - 10grid
line (wherej = 1 is the surface grid and j = 17 is the outer boundary of the grid) is defined as the

j = 10 grid line in
imbedded grid defines
hole surface

Points from outer

grid lying inside hole
surface identified as

hole points and blanked

Points from outer

grid lying immediately
outside hole surface

identified as interpolation
boundary points

Figure 23. Example of defining hole in outer grid using surface from imbedded grid.
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surfacein the imbeddedgrid whichmakesaholein theoutergrid. Thegridpointsin theoutergrid are
thencheckedto seeif theylie insideor outsidetheholeboundarydefinedby thej = 10surfacein the
imbeddedgrid. Grid pointsfrom theoutergrid lying insidethesurfacedefiningtheholeboundaryare
identifiedasholepoints. Thesetof grid pointsfromtheoutergridthatareimmediatelyoutsidethe
surfacedefiningtheholeboundaryareidentifiedasinterpolationboundarypoints.Theouterboundary
pointsof theimbeddedgrid arealsoidentifiedasinterpolationboundarypoints. Communicationof the
solutionto theNavier-Stokesequationsbetweenthetwogrids.isachievedbyinterpolatingthe
boundaryconditionsfor the interpolationboundarypointsin onegrid from thefield pointsin theother
grid. Thuscaremustbe takento definethesurfacein theimbeddedgrid whichmakesaholein the
outergridsuchthatthereis aminimumoverlapof atleastonegrid cellbetweenthegridsaroundthe
entireholeboundary.

Thesecondmethodof creatingholesin agrid is to specifyaboxor setof boxesin theoutergrid
whichdefineholeboundaries.For thesimplecaseof twogrids,the imbeddedgrid is positioned
within thebox andmusthaveits entireouterboundaryoutsidethebox asshownin figure24. For
morecomplexcases,multipleboxescanbeusedto definetheholeboundary.Boxescanalsobeused
in conjunctionwith thesurfacemethoddescribedaboveto generateacomplexholeboundary.Each
box isdefinedby inputtingminimumandmaximumvaluesfor eachof thex, and y coordinates. Hole

points and interpolation boundary points are then identified as described above.

Box defining hole boundaries
in outer grid

Figure 24. Example of defining hole in outer grid using a box.
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Thedirectmethodfor definingaholein ameshinvolvesspecifyingthe i, j indices of the grid

points that are to be identified as hole points. The interpolation boundary points are defined as the set

of grid points immediately adjacent to the user-specified hole points. Again, care must be taken to

allow the imbedded grid and the outer grid to overlap by at least one grid cell around the entire hole

boundary to allow interpolation stencils to be set up for each of the interpolation boundary points. The

direct method of defining holes in a mesh can be combined with the indirect methods described above

to provide considerable flexibility in creating complex hole boundaries.

Once the individual grids have all been positioned within the composite grid and all the hole points

and interpolation boundary points have been identified, PEGSUS must identify each grid point in the

composite grid as either a field point, a hole point, or an interpolation boundary point so that the

algorithm used for solving the Navier-Stokes equations on the composite grid can treat all the grid

points properly. This is accomplished by means of an array called IBLANK. Every grid point in the

composite grid has an IBLANK value which is stored in the IBLANK array. Hole points and

interpolation boundary points are assigned an IBLANK value of zero (IBLANK = 0). These points

are either ignored by the flow solution algorithm if they are a hole point or have the solution updated

by interpolation if they are an interpolation boundary point. Field points have an IBLANK value of

one (IBLANK = 1) and the solution at these points is updated by the flow solution algorithm and the

associated boundary conditions. The IBLANK array is written to an interpolation file which can be

read in by the flow solution algorithm.

In addition to setting up the IBLANK array, PEGSUS must determine an interpolation stencil or

set of grid points that can be used to supply information to a given interpolation boundary point and the

corresponding interpolation coefficients for that stencil. The interpolation stencil for a given

interpolation boundary point will depend on how the hole boundary is defined. PEGSUS provides a

choice of two different types of hole boundaries: a single fringe boundary and double fringe boundary.

A fringe point is another name for an interpolation boundary point. A single fringe boundary is

defined as the set of grid points immediately adjacent to a hole in a grid. For a single fringe boundary,

there is only one interpolation boundary point or fringe point between a hole point and a field point. If

two interpolation boundary points are defined between a hole point and a field point, a double fringe

boundary results. A double fringe boundary generally provides more accurate interpolation between

grids than a single fringe boundary because it allows the use of a higher order interpolation stencil.

However, a double fringe boundary can be more difficult to implement when creating a composite grid

because it requires a larger overlap region between the hole boundary in the outer grid and the outer

boundary of the imbedded grid.

Grid Generation Process

The two-dimensional computational grid used to represent the two-element NACA 632-215 ModB

airfoil in the Ames 7- by 10-Foot Wind Tunnel was composed of three individual structured grids

which were combined into a single composite computational grid using the chimera scheme. The three

individual grids used were the main element grid, the flap grid, and the wind tunnel test section grid.

The computational grid included the wind tunnel test section so that direct comparisons could be made

between the computational results and the experimental results without having to make any wind tunnel

wall corrections to the experimental data.

The coordinate data used to generate the surface grids representing the main element and the flap

was obtained from a digital validation of the model. A Brown and Sharpe validator was used to

digitize the main element and the flap. Approximate section coordinate data for the main element and
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flapwasusedto determinesurfacenormalvectorssothatthevalidatorcouldmakeits measurements
bycomingin normalto thesurface.Thisgreatlyimprovestheaccuracyof themeasurementsin
regionsof high surfacecurvaturesuchasin theleadingedgeregions.TheBrown andSharpe
validatorhasanominalaccuracyof betterthan_+0.001inch. Forthecomputationalgrids,all
coordinatedatawasnondimensionalizedby thechordof theairfoil with theflap retracted,yieldinga
referencechordof 1.0for thecomputationalmodel. All gridpoint spacingsanddistancesin the
following discussionshouldbeunderstoodasnondimensionalfractionsof chord.

Themainelementof theairfoil andtheflapwereeachrepresentedwith asingletwo-dimensionalC
grid. Thesurfacegrid usedfor themainelementandits wakeisshownin figure 25. Notethatthe
upperandlowerwakelinesarecoincidentandthefull lengthof thewakeis not shown.Theactual
gridpointsareomittedfor clarity. A similarsurfacegrid wasusedfor theflap. Theshapeof themain

Figure25.Surfacegridsusedto generatemainelementandflap grids.

elementwakeline wasbasedin partonpreviouscomputationalworkdoneon two-elementairfoilsby
Carrananto[12]. Themainelementwakeline followsthecontourof theuppersurfaceof thedeflected
flap,maintainingaconstantheightabovetheflapequalto thesizeof theflapgapbetweenthemain
elementandtheflap. Beyondthetrailingedgeof theflap, themainelementwakeline is thendeflected
graduallyuntil it linesupwith thefreestreamflow. Themainelementwakelineextends2.5chord
lengthsdownstreamfrom theflap trailingedge.Thewakeline is representedwith 130gridpoints.
Vinokurstretchingis usedwith a gridspacingof 0.08atthedownstreamendof thewakeandagrid
spacingof 1.0E-05atthemainelementtrailingedge. A highdensityof grid pointsalongthemain
elementwakeline wasdesiredin orderto resolveflow field detailsovertheuppersurfaceof theflap.

Theflapwakeline leavestangentto thelowersurfaceof theflapatthetrailingedgeandgradually
deflectsuntil it linesupwith thefreestreamflow. Theflapwakelineextends1.25chordlengths
downstreamfrom theflaptrailingedgeandis representedwith 110gridpoints. Vinokur stretchingis
usedwith agrid spacingof 0.025atthedownstreamendof thewakelineandagrid spacingof 1.0E-
05attheflap trailingedge.Theshapeof thewakelinesfor eachelementweredeterminedonatrial-
and-errorbasiswith theobjectiveof keepingthecomputedvelocitydefectfrom eachwakemoreor less
centeredon thewakelines.

Thetrailingedgesof themainelementandtheflaprequiredspecialattentionin thesurfacegrid
generationprocess.TheNACA 632-215ModBairfoil hasblunttrailingedgeson themainelement
andflap,with athicknessof tic = 0.0013andt/c = 0.001respectively.Theblunt trailingedgeswere
modeledasshownin figure26. Theactualtrailingedgethicknesswasmaintainedup to apoint 0.005
from thetrailing edge.Thentheuppersurfacewastransitioneddowntothelower surfaceusinga
quadraticcurvefit whichmatchedtheslopeof theuppersurfaceatthepoint 0.005fromthetrailing
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Figure 26. Model used to represent blunt trailing edges in the computational grid.

edge. This model allowed the flow physics associated with a blunt trailing edge, namely a

recirculation bubble aft of the blunt trailing edge and a base pressure load, to be captured while

permitting the main element and flap to each be represented with a single conventional C grid. This

model also simplified the task of creating the composite grid using the chimera scheme. The wake

region behind the blunt trailing edges of the main element and flap did not have to be represented with

separate grids. This reduced the number of individual grids required to represent the two-element

airfoil from four to two and made it easier to parametrically vary the flap gap and flap angle with

respect to the main element.

The surface grids for the main element and flap were divided into several regions. Vinokur

stretching with grid point spacing specified at the beginning and end of the region was used to control

the spacing of grid points in all regions. The first region extended from the trailing edge to a point

0.001 forward of the trailing edge on the lower surface on each element. This region was represented

using 25 grid points with a beginning and ending grid spacing of 1.0E-05. This region was created to

allow the lift-enhancing tabs to be modeled as shown in figure 27. In the boundary conditions file for

the Navier-Stokes solution algorithm, no slip boundary conditions are specified for a set of grid points

representing the surface of the tab, as depicted by the outline in figure 27. The points within the

outline representing the tab have their IBLANK value set to zero in the IBLANK array, so that these

points are ignored by the solution algorithm. The beginning and ending grid spacings in this region

were chosen to resolve the boundary layer along the surface of the tabs. The number of grid points

used in the tab region was chosen such that the grid lines leaving normal to the lower surface at the

trailing edge remained relatively parallel to each other at least through a distance equal to the height of

the tab. When no tab is desired on either the main element or the flap, the corresponding boundary

conditions are simply commented out in the boundary condition file and the grid points at the tab

location are treated as normal field points.

The next region of the surface grid for the main element is the cove region. This region extends

from a point 0.001 forward of the main element trailing edge to the beginning of the cove on the lower
surface. On the NACA 632-215 ModB airfoil used in the experiment, the lower surface of the airfoil

transitions smoothly into the cove region as shown in figure 28(a). This geometry does not produce a
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Figure 27. Cove tab region of main element grid.

well-defined flow separation point, as would be the case for the cove region shown in figure 28(b).

Thus, the grid spacing at the beginning of the cove region was made fine to try and accurately resolve

the point at which the flow separates as it enters the cove region. The cove region was represented

using 80 grid points with a grid spacing of 0.0005 at the upstream end of the cove and a grid spacing

of 1.0E-05 at the downstream end of the cove.

The remainder of the surface grids for the main element and the flap are divided into two regions:

the lower surface region and the upper surface region. This allowed grid points to be clustered at the

leading edge of each element. The lower surface of the main element, from the leading edge to the

beginning of the cove, is represented using 80 grid points with a grid spacing of 0.002 at the leading

edge and 0.0005 at the beginning of the cove. The upper surface of the main element is represented

using 115 grid points with a grid spacing of 0.002 at the leading edge and 1.0E-05 at the trailing edge.

The flap lower surface, from the leading edge to the beginning of the tab region, is represented with 65

grid points with a grid spacing of 0.001 at the leading edge and 1.0E-05 at the beginning of the tab

region. The flap upper surface is represented with 90 grid points with the same initial and ending grid

point spacing as the lower surface. The main element surface grid, including the upper and lower

wake lines, utilizes 561 grid points. The flap surface grid, including the wake lines, is made up of 401

grid points.

The C grids for the main element and flap were generated with HYPGEN, using the surface grids

for the main element and the flap as input. Both C grids were divided into several zones in order to

capture key flow field features. Hyperbolic tangent stretching with initial and final grid point spacing

specified was used to control the spacing of grid points in each zone. The first zone extended from the

surface to a distance, measured normal to the surface, equal to the height of the lift-enhancing tab being
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a)Main elementcovefor ModB airfoil

b) Main elementcovetypical of current
transportaircraft

Figure28.Coveregionsonmainelementfor ModBmodelandfor typicaltransportaircraft.

modeled.Forexample,if thetabheightbeingsimulatedwas0.005,thefirst zoneextendedadistance
of 0.005from thesurface.Thisallowedthegrid spacingin thej direction(normalto thesurfacegrid)
to becontrolledatthetip of thetab. Thegrid spacingatthesurfacein thiszonewas1.0E-05,which
yieldeday+= 3.0atthefirst grid point abovethesurface.Thisvaluewaschosenbasedonworkdone
by Rogersin whichtheeffectof thegrid spacingatthesurfaceon theaccuracyof variousturbulence
modelswasstudied[21]. Thegrid point spacingattheouteredgeof this zonewas2.0E-05.A total
of 45grid pointsin thej directionwereusedfor thiszone.

Theremainingzonesin themainelementgridwereusedto controlgrid pointspacingin thej
directionin theflapgapregionof thegrid,aswell asin thevicinity of theholeboundarycreatedby
theflap grid. Thegrid pointspacingattheinneredgeof eachzonematchedthespacingattheouter
edgeof thepreviouszone,thusprovidingasmoothtransitionin grid point spacingfromonezoneto
thenext. Thesecondzonein themainelementgrid hadawidthin thej directionof 0.07andatotalof
45pointswereusedin thiszone.Thegrid pointspacingattheouteredgeof thiszonewas2.0E-03.
Thethird zonehadawidth of 0.5 andthegridpoint spacingattheouteredgeof thiszonewas
5.0E-02.Thiszonecontained20grid pointsin thej direction.Thefinal outerzonein themain
elementgrid was0.5wide,contained10gridpointsin thej direction,andagrid pointspacingatthe
outeredgeof thezoneof 1.0E-01.Thetotalnumberof gridpointsin thej directionusedfor themain
elementgrid was120.Theouterboundaryof themainelementgrid waslocated1.075chordlengths
from thesurface.

Theremainingzonesin theflapgrid wereusedto controlgrid pointspacingin thej directionin the
regionwheretheflap grid crossesthewakeline of themainelementgrid. Previousworkby Rogers
[21] hasshowntheimportanceof providingsufficientresolutionin theflapgrid attheinterface
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betweentheflapgrid andthemainelementgridwheretheflapgridcrossesthemainelementwakecut.
Thisis necessarysothatflow field informationfrom themainelementwakeis properlycommunicated
to theflapgrid. Sincethemainelementwakelinemaintainsadistanceabovetheflapuppersurface
equalto theflapgapsize,thewidth of thesecondzonein theflapgrid is setequalto theflapgapsize
minusthewidth of thefirst zonein theflapgrid. Thisallowsj grid lines in the flap grid to be

clustered around the wake line of the main element. The second zone in the flap grid contains 45

points in the j direction and the spacing at the outer edge of the zone is 2.0E-04. The final zone in the

flap grid has a width of 0.045, contains 35 grid points in thej direction, and has a grid spacing of

2.0E-03 at the outer edge. A total of 125 grid points in thej direction were used in the flap grid. The

outer boundary of the flap grid was located 0.07 to 0.10 chord lengths from the surface, depending on

the size of the flap gap.

Once the basic main element and flap grids were constructed, further refinement was required in

the wake regions of each grid. For a C grid around an airfoil, the grid spacing in the direction normal

to the wake line tends to be very fine, with a large number of grid points near the wake line. This is a

result of the fine grid spacing used normal to the airfoil surface to resolve the boundary layer. The

clustering of grid lines around the wake line can lead to convergence problems if the airfoil grid is

imbedded in an outer, coarser grid, due to inaccuracies in the interpolation between the very fine grid

and the coarse grid. It can also make resolving the wake velocity defect more difficult as the distance

from the trailing edge increases. The wake from an airfoil spreads as it moves away from the airfoil

trailing edge. If grid lines are tightly clustered around the wake line, the wake velocity defect is not

resolved very well. However, if the grid lines are spread away from the wake line in a fashion similar

to the wake spreading, it is easier to resolve the wake accurately over a greater distance downstream

from the airfoil trailing edge. Spreading the grid lines away from the wake line can also improve

convergence for an airfoil grid imbedded in a coarse outer grid because it provides a better matching of

grid spacing at the interface between the two grids. The grid lines around the wake line can be made to

spread with increasing distance from the airfoil trailing edge by applying an elliptic smoothing

algorithm to the wake region of the grid.

The individual grid files were read into an elliptic smoothing program along with an input file

identifying the grid point index corresponding to the lower surface trailing edge grid point. The grid

point index corresponding to the upper surface trailing edge grid point can be computed based on the

fact that the upper and lower wake lines of a C grid have the same number of grid points. The elliptic

smoothing algorithm only affects grid points that are downstream of the trailing edge.

The algorithm works by utilizing the elliptic grid generation equations given below.

_'_ + _;'Y = P(_' 77) (83)

r/x_ + r/,y = Q(_, 77)

The grid spacing control parameters P and Q are set to zero, reducing equations (83) to a pair of

Laplace's equations. Transforming equations (83) to computational space with P and Q set to zero

yields

ct x_ - 2fl x_. + _"x_. = 0

C_y_ - 2fl y_n + )' y._ = 0

(84)

Finite difference expressions for the partial derivatives are then substituted into equations (84). The

resulting finite difference equations are solved by using an ADI method, but only sweeping through
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a) Prior to smoothing

b) After smoothing

Figure 29. Elliptic smoothing of grid in region of main element wake.
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b) After smoothing

Figure 30. Elliptic smoothing of grid in region of flap wake.
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thegrid in the i direction (along the wake line). This has the effect of making the grid point spacing in

the direction normal to the wake line more uniform with increasing distance downstream from the

trailing edge, while preserving the grid point spacing along the wake line. Two to four iterations are

sufficient to produce a smoothly spreading grid in the wake region. The resulting refined grid is

compared to the original grid in figure 29. A similar comparison is shown in figure 30 for the flap

grid.

The area bounded by the wind tunnel test section walls was represented using an H grid as shown

in figure 31. A close up of the test section region of the grid is given in figure 32. The test section

walls in the NASA Ames 7- by 10-Foot Wind Tunnel diverge at a small angle to account for the

growth in the displacement thickness of the wall boundary layer. Thus, the effective width between

the side walls in the 7- by 10-Foot Wind Tunnel is a constant 10 ft down the length of the test section.

The walls in the computational grid were modeled as parallel walls set 10 ft apart. A "slip" boundary

condition was specified at the wall, so that a uniform velocity profile was obtained across the entire

width of the test section grid. The test section grid was extended 10 chord lengths upstream and 11

chord lengths downstream of the center of rotation for the airfoil. Increasing the length of the test

section grid further in either the upstream or the downstream direction did not affect the solution in the

imbedded multi-element airfoil grid. Vinokur stretching was used to space the grid points in both the

downstream and cross-stream directions in the test section grid. A total of 151 grid points were used

in the downstream direction with the initial and final grid point spacing set to 1.0. In the cross-stream

direction, 150 grid points were used with the initial and final grid point spacing set to 0.1. This

resulted in a clustering of grid lines in the central portion of the test section grid, which made defining

the interface between the test section grid and the imbedded airfoil grid simpler.

Once the three individual grids were constructed and refined, the final step in the grid generation

process was to combine the three grids in the proper positions and orientations using PEGSUS to

create the composite grid. The flap grid was imbedded entirely within the main element grid. The

input parameters in PEGSUS used to define the position and orientation of the flap grid in the main

element grid were determined using a utility program called GAPME, originally written by Storms

[8,9] and modified for the present study. The GAPME program reads in the surface grid files for the

main element and the flap, along with the desired settings for flap angle, gap, and overlap. GAPME

has several algorithms for setting flap gap. The one used in this case was consistent with the

experimental definition of flap gap described earlier and shown in figure 14. The GAPME program

rotates the flap about its leading edge to the desired flap angle. The flap is then translated in two-

dimensional space until the desired flap gap and overlap are achieved. Finally, the flap is rotated back

to a 0 ° flap angle and the new coordinates of the flap leading edge are determined, along with the

translation offsets from the original coordinates of the flap leading edge. The translation offsets and

the new coordinates of the flap leading edge are written to an output file for use in setting input

parameters in PEGSUS. In PEGSUS, the flap grid is first translated by the translation offsets and

then rotated to the desired flap angle about a rotation point defined by the new coordinates of the flap

leading edge as computed by GAPME.

In order to imbed the flap grid in the main element grid, the hole boundary of the hole that the flap

grid makes in the main element grid must be defined. This is accomplished by using the indirect

method of defining a surface to create the hole boundary within PEGSUS. A surface is defined in the

flap grid which cuts a hole in the main element grid. The surface was defined as thej = 70 grid line,

the i -- 15 grid line, and the i = 387 grid line. All the main element grid points which lie within this

surface are blanked out. The surface was chosen to provide sufficient grid overlap between the main

element grid and the flap grid to use the double fringe method for the interpolation boundary points.
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Figure 31. H grid used to model wind tunnel.
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Figure 32. Test section region of tunnel grid.
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Figure33.Holesspecifiedin flapgridto accommodateflap gapregion.

Figure34.Locationof covetabrelativeto flapgrid.

62



I! ......

iii i!!

Ill[llll !!! !!i
iii iii

II

NN

Figure 35. Final chimera composite grid for two-element airfoil in tunnel.

It was also necessary to specify a hole in the flap grid caused by the main element grid in order to

properly handle the flap gap region. In this case, the direct method of hole specification was used.

Two hole regions were explicitly defined in the flap grid as shown in figure 33. For a flap deflection

angle of 30 °, the first was defined as the region i =203 to i = 204 andj =120 toj = 125. The second

was defined as the region i = 205 to i = 217 andj = 86 toj = 125. These two holes in the flap grid

also allowed the lift enhancing tabs attached to the main element to be contained entirely within the

main element grid as shown in figure 34. The definition of the two holes in the flap grid had to be

changed whenever flap deflection angle was changed, but it did not have to be changed for gap

changes.

A similar process was followed for imbedding the main element/flap composite grid within the test

section grid. A surface in the main element grid which creates a hole in the test section grid was

defined. The surface was specified as thej = 112 grid line, the i = 6 grid line, and the i = 556 grid

line. This allowed sufficient overlap between the main element grid and the test section grid to use the

double fringe method for the interpolation boundary points.

The final composite grid is shown in figure 35 for an airfoil angle of attack of 0 °. Angle of attack

was changed by rotating the test section grid in PEGSUS to the desired angle while holding the airfoil

grids fixed. A total of 140,095 grid points (including grid points in holes that were blanked out) were

used in the composite grid. The composite grid created for this study utilized much finer grid

resolution than was used in previous studies [12]. Most of the increased resolution was concentrated

in the wake and flap gap regions of the grid. One particular difference between the grid used in this

study and those of previous studies was the use of grid spacing fine enough to resolve the boundary

layer along all the surfaces of the lift-enhancing tabs. The purpose of the enhanced grid resolution was
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to try to fulfill oneof thekeyobjectivesof thisresearch:to developanunderstandingof theflow
physicsassociatedwith lift-enhancingtabs.

Boundary Conditions

All boundary points for a computational grid must be assigned boundary conditions (or initial

conditions for some boundary points in unsteady computations) in order for the Navier-Stokes

solution algorithm to generate a solution at all field points within the grid. In a composite grid created

using the chimera scheme, there are two types of boundary points that must be considered. The first

type of boundary points are hole boundary points and outer boundary points of imbedded grids.

These boundary points are assigned boundary conditions composed of interpolation stencils and

interpolation coefficients computed by a code such as PEGSUS during the composite grid generation

process and written to a file which can then be read in by the Navier-Stokes code. The second type of

boundary points include surface grid points, wake line points in C grids, and outer boundary points of

the composite grid. This type of boundary point must be identified explicitly by the user and assigned

some type of boundary condition. This is typically done in a boundary conditions file which is read in

by the Navier-Stokes code. In this section the types of boundary conditions applied to the various

boundary points of the composite grid will be identified. The specific numerical implementation of the

inflow and outflow boundary conditions within INS2D-UP was covered earlier in this paper.

For the grid used in this study, the outer boundary points of the composite grid are the boundary

points of the test section grid. The boundary points defined by the grid linesj = 1 andj = 150

represent the walls of the test section. As mentioned previously, these boundary points were assigned

a "slip" boundary condition. This implies the velocity gradient normal to the wall is zero. The

pressure at the wall is obtained by forcing the pressure gradient normal to the wall to also be zero. The

boundary points defined by the grid line i = 1 represent the inflow boundary to the test Section. Since

the test section walls were modeled as slip walls with no boundary layer, a boundary condition of

constant velocity was assumed at the inflow boundary. The pressure at the inflow boundary was

determined using the characteristic relations described earlier to transmit pressure information from the

interior of the grid to the boundary. The boundary points defined by the grid line i = 151 represent the

outflow boundary to the test section. The outflow boundary was assumed to be far enough

downstream that the static pressure was constant across the outflow boundary. The velocity at the

outflow boundary was determined using a characteristic relation. A number of different inflow and

outflow boundary condition combinations were tried to test the sensitivity of the solution to the inflow

and outflow boundary conditions. These included constant total pressure at the inflow boundary and

extrapolated velocity at the outflow boundary. Use of different inflow and outflow boundary

conditions had a negligible effect on the solution.

All surface grid points for the main element and flap were assigned a no-slip boundary condition.

For a no-slip boundary condition, the velocity at the surface is set to zero and the pressure at the

surface is determined by requiring the pressure gradient normal to the surface to be zero. The surfaces

used to define the lift-enhancing tabs were also assigned a no-slip boundary condition. The grid points

contained within the surface defining the lift-enhancing tab were identified and given a value of zero in

the ]BLANK array so that they would be ignored by the Navier-Stokes solver. The boundary

conditions for the grid points along the wake lines for the main element and the flap were handled by

updating the flow variables at the wake line points using a first order averaging of values from

surrounding grid points.
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Grid Sensitivity Studies

A great deal of effort went into the development of the standard composite grid used to represent

the NACA 632-215 ModB two-element airfoil in the Ames 7- by 10-Foot Wind Tunnel for this

investigation. Many of the techniques used in the grid generation process were based on work with

multi-element airfoil grids done by other researchers [12,39,40,41]. Refinements to the grid

generation process were developed on a trial-and -error basis to meet the objectives of the present

study. The overall grid generation process has been described in detail above. Once the standard grid

was developed, a grid refinement study was conducted to ensure that the solution obtained using the

C

-4

-3

-2

p -1

0

1

• ' '' !/_'' !'''!'''!] normal grid

::...........! .......................i..............i---[ ..... fine grid

i i

-0.2

] I I I I I I I I I I I 1 I I _ 1 I

0 0.2 0.4 0.6 0.8 1
X/C

a) Pressure coefficient distribution

illlll

1.2 1.4

C
f

0.03

0.02

0.01

0

-0.01

_ _ _ normal grid]

! ...............!...[ ..... fine grid ]

plotted as n ,,ativ

0 0.2 0.4 0.6 0.8 1 1.2 1.4
x/c

b) Skin friction coefficient distribution

Figure 36. Results of grid sensitivity study. (Sf = 27 °, zjc = 0.02, Xol/C = 0.015, oc = 0 °)
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standard grid was grid-independent. A fine grid was developed by doubling the number of grid points

in every region in the i direction and every zone in the j direction of the standard grid. The beginning

and ending grid point spacings used in every region or zone of the standard grid were preserved in the

fine grid. The resulting fine grid had 4 times the number of grid points the standard grid had, for a

total of 560,380 grid points.

The solution obtained on the fine grid is compared with the solution obtained on the standard grid

in figure 36. The flap was set to a deflection angle of 27 °, a gap of 0.02, and an overlap of 0.015.

The angle of attack was 0 ° and the Reynolds number was set to 3.5x106. The plot of pressure

coefficient versus x/c for the two solutions show virtually no difference between the solution obtained

using the fine grid and the solution obtained using the standard grid. The integrated force and moment

coefficients varied by approximately 0.25%. A slight difference can be seen between the two solutions

in the plot of skin friction coefficient versus x/c. The skin friction coefficients from the fine grid

solution indicate that the flow separation that happens at the beginning of the cove region occurs at a

position Ax/c = 0.005 further downstream than the results from the standard grid indicate. Based on

the favorable comparison of results obtained for the standard and fine grids, the solutions obtained on

the standard grid were assumed to be grid-independent.

The only caveat to this assumption is that separation locations can only be resolved to the accuracy

of the local grid point spacing at the point of separation. For cases where the separation point occurs

in a region of fine grid point spacing, such as near the trailing edges of the main element or flap, the

separation point predicted on the fine grid is essentially the same as the separation point predicted on

the standard grid. However, if the separation point occurs in a region which typically has coarser grid

point spacing, such as at the mid-chord of the main element or flap, there can be a difference of

Ax/c = 0.01 - 0.02 in the separation point location in the standard and fine grids.
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RESULTS AND DISCUSSION

As mentioned previously, the overall goal of this research is to develop an understanding of the

flow physics associated with lift-enhancing tabs applied to a multi-element airfoil. Computations were

performed for a large number of the configurations tested during the experimental phase of this study.

The intent of the computations was to supply additional flow field data that could not be obtained

during the experiment. The experimental and computational results obtained during this research will

be used together to achieve the overall goal stated above.

All of the computations presented in this report were obtained using the INS2D-UP code in the

steady-state mode with the Spalart-Allmaras turbulence model. In the computations, the flow was

treated as fully turbulent on both the main element and the flap. The artificial compressibility factor

was set to [3= 100 and the pseudo-time step size was set to A'C= 1.0. Steady-state solutions were

typically achieved in 500 iterations. The maximum residual in the solution was reduced by 8 orders of

magnitude and the maximum divergence in the converged solution was on the order of lxl0 -3 or less.

Typical solution times on a Cray C-90 computer were 1.69x10 -5 seconds/iteration/point for a total
execution time of about 1200 seconds.

First, comparisons of the experimental and computational results for baseline configurations of the

NACA 632-215 ModB two-element airfoil will be presented and differences between the two

discussed. Next, a variety of experimental and computational results illustrating the effects of lift-
enhancing tabs on the NACA 632-215 ModB two-element airfoil will be shown. Again, any

differences between the experimental and computational results will be discussed. Finally, a model

will be proposed to explain how lift-enhancing tabs function on multi-element airfoils.

Baseline Configurations

The baseline performance of the NACA 632-215 ModB two-element airfoil was established for

flap deflection angles of 8f = 19 °, 29 °, and 39 °. For each flap deflection angle, the flap gap was varied

from Zg/C = 0.02 to zg/c = 0.05 in 0.01 increments. Flap overlap was held constant at Xox/C= 0.015.

The experimental results for the 19 ° and the 29 ° flap deflection angles were qualitatively very similar,

while the results for the 39 ° flap deflection angle were very different. Thus, only results from the 29 °

and 39 ° flap deflection angles will be discussed here.

An important observation regarding flap deflection angle was made near the end of the wind-tunnel

test. Light scratch marks were discovered on the surface of the auxiliary turntables underneath the

trailing edge of the flap. A careful examination revealed that the scratch marks existed at three

positions consistent with the position of the flap trailing edge at each of the three flap deflection angles.

A clearance of approximately 0.125 inches existed between the flap and the upper and lower auxiliary

turntables. This clearance was filled in with a piece of hard foam which had the same cross-sectional

shape as the flap. Thus, the scratch marks on the auxiliary turntables were not made by the flap. The

aluminum pieces used as lift-enhancing tabs, however, did extend all the way to the auxiliary

turntables and they appeared to be the cause of the scratch marks. The scratch marks indicated that the

trailing edge of the flap was being displaced under aerodynamic load. The displacement of the flap

trailing edge could only be the result of a deformation of the flap airfoil shape under load, a rotation of

the flap due to bending of the flap brackets under load, or a combination of the two effects.

An attempt was made to quantify the motion of the flap trailing edge for different flap deflection

angles, both with and without lift-enhancing tabs at the flap trailing edge. A piece of white tape was

placed on the lower auxiliary turntable beneath the flap trailing edge. A small ink pen cartridge was
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tapedbehindtheblunttrailingedgeof theflapsothatthepointof thepencartridgewasincontactwith
thewhite tapeon thelowerauxiliaryturntable.Thedynamicpressurein thewind-tunneltestsection
wassetto standardtestconditionsfor afewminutesandthenreturnedto zero. Themotionof theflap
trailingedgeunderaerodynamicloadcausedthepencartridgeto leaveamarkonthewhitetapewhich
couldbeaccuratelymeasured.

If themotionof theflap trailingedgeis assumedto beduesolelyto rotationof theflap asaresult
of bendingof theflapbracketsunderload,thenthemeasurementsindicaterotationsof 1.5° for aflap
deflectionangleof 19°, 2.0° for aflap deflectionangleof 29°, andapproximately3.0° for aflap
deflectionangleof 39°. In all cases,theflapdeflectionangleunderloadwaslessthanthestaticflap
deflectionangle. Thechangein flapdeflectionanglefor aflapangleof 39° wasdifficult to measure
accuratelydueto unsteadinessin theflow causedby flow separationovertheuppersurfaceof theflap.
Time didnotpermitanassessmentof thechangein flapdeflectionanglefor all combinationsof flap
deflectionangle,flap gap,andlift-enhancingtabs. However,thelimitednumberof caseschecked
indicatedthatthedominantfactorin determiningthechangein flapdeflectionanglewasthestaticflap
deflectionanglesetting.Theassumptionthatthemotionof theflap trailingedgewasduesolelyto
rotationof theflap wasverifiedafterthewind-tunneltestbyperformingafinite elementanalysisof the
flapunderpressureload. Theresultsof thisanalysisindicatedthattheflapdeformedby 0.003inches
or lessatthetrailing edge.

It shouldbenotedthatthephenomenonof theflapdeflectionanglechangingfromits staticvalue
underloadiscommononall aircraftwith high-lift systems.Fora largetransportaircraftwith the
high-lift systemfully deployed,thechangein flapdeflectionanglecanbeashighas5°. This
phenomenonis commonlyknownasflapblowback. In a studyof amulti-elementhigh-lift system,
flapblowbackcanmakecomparingexperimentalandcomputationalresultsdifficult. Theperformance
of amulti-elementairfoil is stronglydependenton thedeflectionangleof thevariouselements.If the
flapelementsin acomputationalmodelarenotsetto thesamedeflectionangle,underaerodynamic
load,astheexperimentalmodel,poorcorrelationof experimentalandcomputationaldatamayresult.

Figure37(a)showsacomparisonof theexperimentalpressurecoefficientdistributionon themain
elementandflap with computationalresultsobtainedusingINS2D-UP.Theflapdeflectionangleused
for thecomputationswasthemeasuredstaticflapdeflectionangleof 29°. Theangleof attackusedwas
0°, whichpermittedthedifferencesbetweentheexperimentalandcomputationalresultsto beseenmore
easily. Thepressurecoefficientdistributiononboththemainelementandtheflap is overpredictedby
INS2D-UP.Thedifferencebetweentheexperimentalandcomputationalresultsismorepronounced
on themainelement.In amulti-elementhigh-lift system,thelift actingon themainelementis very
sensitiveto theamountof lift generatedbytheflap. Smallchangesin flap lift canproducesubstantial
changesin main-elementlift. Thussmalldifferencesbetweentheexperimentalandcomputedpressure
coefficientdistributionson theflapcanleadto largedifferenceson themainelement.Thishighlights
the importanceof matchingtheexperimentalflapdeflectionangleunderaerodynamicloadin the
computationalmodel.

If theflapdeflectionangleusedin thecomputationalmodelis reducedby 2° tomatchthe
experimentalflapdeflectionangleunderaerodynamicload,theagreementbetweentheexperimental
andcomputationalresultsis muchbetter,asshownin figure37(b). In thiscasetheexperimentaland
computedpressurecoefficientsontheflapmatchverywell. Thedifferencesbetweentheexperimental
andcomputedpressurecoefficientdistributiononthemainelementaresubstantiallyreduced,with
mostof thedifferenceoccurringin theleadingedgeregionatthesuctionpeak.Basedontheseresults,
all computedresultspresentedin thisreportfor configurationswithastaticflapdeflectionangleof 29°
will utilizeaflap deflectionangleof 27°.
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Figure 37. Comparison of experimental and computed pressure coefficient distributions for baseline

configuration (Sf = 29 °, zg/c = 0.02, Xol/C = 0.015, cz = 0°).

The situation is not quite as simple for configurations with a static flap deflection angle of 39 °.

When the flap is deflected to 39 ° , the flow over the upper surface of the flap

begins to separate. For small flap gaps, the region of separated flow is confined to near the trailing

edge of the flap. As the flap gap is increased, however, the flow separation point on the flap upper

surface moves upstream rapidly. This creates a number of problems when comparing two-

dimensional experimental results to two-dimensional computed results.
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Thefirst problemis thatwhentheflow separatesonamodelsuchastheoneusedin this
experiment,theflow field is no longertwo-dimensional.This is illustratedin figure 38. Pressure
coefficientdistributionson theflap areplottedatthreedifferentspanlocations.Thespanwisevariation
in pressurecoefficientdistributionisevident.Thelift actingontheflap is highestatthemid-spanand
dropsoff ateitherendof theflap. Alsonotethatthelift distributionon theflap is notsymmetricabout
themid-spanof theflap. Flow separationon theuppersurfaceof theflap occursfurtheraft at themid-
spanlocationthanit doesat theoutboardendsof theflap. Thethree-dimensionalityof theflow field
causesthelift on theflap to belower thanastrictlytwo-dimensionalflow overthesameflap.
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Figure 38. Spanwise variation of pressure coefficient distribution on flap for baseline configuration

(_f = 39 °, zg/c = 0.04, Xol/C = 0.015, ot = 0°).

A second problem is that accurately predicting the point of separation of a flow over a smooth

curved surface in an adverse pressure gradient using a Reynolds-Averaged Navier-Stokes code is

difficult. Some of the factors affecting the computed separation point are the turbulence model used,

whether or not boundary layer transition is modeled, and the spacing of the grid points along the

surface in the flow direction. For example, if the grid point spacing on the surface in the vicinity of the

flow separation point is 1% of the airfoil chord, then the computed flow separation point can only be

resolved to within 1% of the airfoil chord. Since the lift on the flap is strongly influenced by the

location of the flow separation point and the lift on the main element is strongly impacted by the lift on

the flap, small errors in the computed location of the flow separation point can lead to large differences

in computed and measured lift on a multi-element airfoil.

Despite these problems, if the same procedure used to set the flap deflection angle in the

computational model for a static flap deflection angle of 29 ° is used for configurations with a 39 ° static

flap deflection angle, reasonable results are obtained, figure 39 shows a comparison of experimental

and computed pressure coefficient distributions on the main element and flap for a configuration with a

39 ° static flap deflection angle and a flap gap of zJc = 0.02. The computed results overpredict the

pressure coefficient distribution, particularly on the main element. The computed results indicate that

the flow has separated on the flap upper surface over the aft 10% of the flap chord, compared to the
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Figure 39. Comparison of experimental and computed pressure coefficient distributions for baseline

configuration (6f = 39 °, zg/c = 0.02, Xo]/C = 0.015, o_ = 0°).

experimental results which indicate almost no flow separation. When the flap deflection angle is

reduced by 3 ° in the computational model, consistent with the measured change in flap deflection angle

under aerodynamic load, the agreement between experimental and computed results improves

significantly. The experimental and computed pressure coefficient distributions on the flap agree quite

well. The agreement between experimental and computed pressure coefficient distributions on the
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Figure 40. Comparison of experimental and computed pressure coefficient distributions for baseline

configuration (_f = 39 °, zg/c = 0.04, Xol/C = 0.015, o_= 0°).

main element, although improved, is not as good as it was for the configuration with a 29 ° static flap

deflection angle.

When the flap gap for the configuration with a static flap deflection angle of 39 ° is increased to

Zg/C = 0.04, some of the problems discussed above become more evident. In this case the flow

separates over the upper surface of the flap at approximately the mid-chord of the flap. In figure 40,

the experimental pressure coefficient distribution is compared with the computed pressure coefficient

distribution. The flap deflection angle in the computational model is set to 39 ° . In this case, measured
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Figure 42. Computed sensitivity of flap pressure distribution to moderate changes in angle of attack for

baseline configuration (INS2D 6f = 27 °, zjc = 0.02, Xol/C = 0.015, o_ = 0°).

and computed results agree quite well on the main element. The results on the flap, however, indicate

a large disagreement in the location of the point of flow separation on the flap upper surface. The

computed results predict flow separation on the flap upper surface too early. If the flap deflection

angle in the computational model is reduced by 3 ° , much better agreement is obtained for the

comparison of the experimental and computed flap pressure coefficient distributions. The flow

separation point on the flap predicted by the computations more closely matches the experimental
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results.Thepressurecoefficientdistributiononthemainelement,however,isnow overpredictedby
thecomputedresults.To maintainconsistencywith themeasuredchangesin flapdeflectionangle
observedin theexperiment,all computedresultspresentedin thisreportfor configurationswith astatic
flapdeflectionangleof 39° will utilizeaflapdeflectionangleof 36°.

An effortwasmadeto identifythesourceof theremainingdifferencebetweentheexperimentaland
computedpressurecoefficientdistributionsin figures38,39,and40. A closeexaminationof the
pressurecoefficientdistributionin theregionof thestagnationpointon themainelementindicatesthat
themeasuredandcomputedstagnationpointsdonotoccuratthesamelocation,asillustratedin figure
41. Thereareanumberof differentpossiblecausesfor thediscrepancyin stagnationpointlocation.
Themostlikely causeis thattheeffectiveangleof attackfor theexperimentalresultsis lower thanit is
for thecomputedresults.A differenceineffectiveangleof attackisconsistentwith thefactthatthe
measuredmainelementpressurecoefficientdistributiondiffersfrom thecomputedresults,even
thoughtheflappressurecoefficientdistributionsmatch. Theflappressurecoefficientdistributionis
relativelyinsensitiveto moderatechangesin angleof attackasillustratedin figure42. Themain
elementpressurecoefficientdistribution,ontheotherhand,is verysensitiveto angleof attack,
particularlyneartheleadingedgewherethelargestdifferencesbetweenmeasuredandcomputedresults
areobserved.

Thedifferencein effectiveangleof attackcouldbedueto flow angularityin thetestsection,
additionalflow angularityinducedbytheimageplanes,aninadequacyof theslip-wallboundary
conditionimposedattheouterboundaryof thecomputationalgrid to simulatetheactualtestsection
wallswith their boundarylayer,or somecombinationof two or moreof thesefactors.Measurements
madeby Wadcock[42] in theemptytunnelindicatethatyawangle(whichrepresentsangleof attack
for thepresentmodelinstallation)variesby _-2-0.50° alongaverticallineoverthecenterof rotationof
theturntable.This flow angularitycouldaccountfor someof thedifferencein effectiveangleof
attack.
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Figure 43. Computed tunnel wall pressure coefficient distribution for the baseline configuration

(INS2D _f = 27 °, zg/c = 0.02, Xol/C = 0.015, o_ = 8°).
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Thecirculationgeneratedbythemulti-elementairfoil in thetestsectionproducesregionsof adverse
pressuregradienton thesidewallsof thetestsectionasshownin figure43. If the lift, andhencethe
circulation,of themulti-elementairfoil is sufficientlylarge,it isconceivablethattheadversepressure
gradientscouldcausethesidewall boundarylayersto separate.If thisoccurred,it wouldsignificantly
changetheeffectiveangleof attackfor themodel.Tuftsplacedonthetestsectionsidewalls,
however,indicatedthatthesidewail boundarylayersremainedattached.

In orderto checktheadequacyof thesimulationof thetestsectionwallsin thecomputedsolution,
a secondcomputationalgrid wascreatedwith notestsectionmodeled.Theflapgrid wascompletely
imbeddedin themainelementgrid, asin thecaseof thestandardgrid; however,theouterboundaryof
themainelementgrid waslocated20chordlengthsfrom thesurfaceof themainelement.The
boundaryconditionestablishedatthemainelementouterboundaryincludedtheinfluenceof apoint
vortexlocatedatthequarterchordof themainelement.Thestrengthof thevortexwassetequalto the
circulationgeneratedby themulti-elementairfoil andwasupdatedateachiterationof thesolution.The
pointvortexwasonly usedto updatetheboundaryconditionsattheouterboundary.Thisnewgrid
simulatedthemulti-elementairfoil in anunboundedfreestreamflow.

By comparingthesolutionobtainedusingthegrid with notestsectionmodeledtothesolution
obtainedusingthegrid with thetestsectionincluded,anestimateof theeffectof thetestsectionwails
onthemeasuredforceandmomentcoefficientscanbederived.Plotsofthecomputedlift, drag,and
pitchingmomentcoefficient,with andwithouttestsectionwallsmodeled,areshownin figure44. In
thecaseof thelift coefficient,theeffectof thepresenceof thetestsectionwallscanbeexpressedasa
changein effectiveangleof attackandachangein referencedynamicpressureusingtheprocedure
describedby AshbyandHarris [43]. Thechangein dynamicpressureis foundby comparingthelift
coefficientversusangleof attackcurvesfor thetwocasesanddeterminingthechangein dynamic
pressurerequiredto makethetwo curvesparallel. Oncethetwocurveshavebeenmadeparallel,the
changein effectiveangleof attackis definedastheangleof attackchangerequiredto makethetwolift
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Figure 44. Computed wall interference effects on force and moment coefficients for a baseline

configuration (INS2D 8f = 27 °, Zg/C = 0.02, Xo]/C = 0.015).
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Figure 44 concluded. Computed wall interference effects on force and moment coefficients for a

baseline configuration (INS2D 8f = 27 °, Zg/C = 0.02, Xol/C = 0.015).

coefficient curves coincident. For a baseline configuration with a static flap deflection angle of

_f = 29 ° and a flap gap of Zg/C = 0.02, the presence of the test section walls increases the dynamic

pressure by 2.5% and increases the angle of attack by 0.2 ° . If the effect of the presence of the test

section walls on the dynamic pressure and angle of attack is computed using traditional methods

described by Rae and Pope for two-dimensional testing [ 18], the dynamic pressure is increased by

1.72% and the angle of attack is increased by 0.093 °. These corrections are of the same order as those
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derivedusingINS2D-UPresults.Thusthecomputationalmodeliscorrectlysimulatingtheeffectof
thepresenceof thetestsectionwallsontheforceandmomentcoefficientsof themulti-elementairfoil.

Thebaselineperformanceof theNACA 632-215ModB two-elementairfoil isshownin figure45
for astaticflap deflectionof 29°. Bothexperimentalandcomputedresultsfor arangeof flapgapare
shown.Theflapdeflectionanglefor thecomputedresultsis 27°. Themaximumangleof attackused
for thecomputedresultsis determinedby thelargestangleof attackatwhichINS2D-UPcanconverge
to a steady-statesolution.Foranglesof attackgreaterthanorequalto theangleof attackfor Clmax, the

flow field becomes unsteady and INS2D-UP has great difficulty in converging to a steady-state

solution. Thus the computed results extend up to an angle of attack which is very near stall.

The experimental lift coefficient versus angle of attack curves exhibit little sensitivity to flap gap.

For Zg/C = 0.04 or less, the only significant variation in the lift coefficient curves is the value of Clmax-

The flap gap that yields the highest Clmax is Zg/C -- 0.04. For Zg/C -- 0.05, the entire lift coefficient

curve is shifted downward by AC1 = 0.10. Tufts on the upper surface of the flap indicated a small

amount of flow separation at the trailing edge of the flap for this flap gap setting. The experimental lift

coefficient versus drag coefficient is relatively unaffected by changes in flap gap. The maximum

change in drag coefficient at a constant lift coefficient is approximately 30 drag counts as flap gap is

varied. The experimental pitching moment coefficient curve shifts in the negative direction as flap gap

is increased up to a flap gap of Zg/C = 0.04. When the flap gap is increased further to Zg/C = 0.05, the

pitching moment coefficient curve begins to shift back in the positive direction. This change in

direction can be attributed to the flow separation over the upper surface of the flap at a flap gap of

zg/c = 0.05.

The computed results exhibit similar trends to those observed in the experimental results. There is

an increased sensitivity to flap gap in the computed results however. The lift coefficient curve begins

to shift downward at a flap gap of Zg/C = 0.04. Also, all of the computed lift coefficient curves are

shifted upward approximately ACI = 0.15 from the corresponding experimental results. The computed

lift coefficient versus drag coefficient curves agree quite well with the corresponding experimental

curves for flap gaps less than Zg/C = 0.04. For flap gaps greater than or equal to Zg/C = 0.04, however,

the computed drag coefficient begins to increase as flap gap is increased. The computed pitching

moment coefficient curves shift in the negative direction as flap gap is increased, but not by as much as

the corresponding experimental curves. At a flap gap of Zg/C - 0.05, the computed pitching moment

coefficient curve begins to shift back in the positive direction, similar to the experimental results. All

of the computed pitching moment coefficients are more negative than the corresponding experimental

data.

Because the flow through the flap gap is dominated by viscous effects, it is possible that the

turbulence model used in the computations could have a strong impact on the sensitivity of the

computed force and moment coefficients to the size of the flap gap. To investigate the effect of the

turbulence model on the solution, additional computations were performed using the Baldwin-Barth

turbulence model. The computations were performed for a configuration with a flap deflection angle

of 27 ° (representing a static flap deflection angle of 29 °) and an angle of attack of 0 °. The flap gap was

varied from Zg/C = 0.02 to Zg/C = 0.05. A plot of the change in lift coefficient versus flap gap is

shown in figure 46. The change in lift coefficient is referenced to the lift coefficient at a flap gap of

zg/c = 0.02. As can be seen, the experimental results indicate a small reduction in lift coefficient with

increasing gap up to a flap gap of Zg/C = 0.04. For larger flap gaps, the lift coefficient begins to

decrease rapidly. The computed results using the Spalart-Allmaras and the Baldwin-Barth turbulence

models both show a more linear decrease in lift coefficient with increasing flap gap. Both turbulence

models overpredict the rate of decrease of lift coefficient as gap is increased for flap gaps less than or
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Figure 45. Sensitivity of force and moment coefficients to the size of the flap gap for a baseline

configuration (_f = 29 °, INS2D _Sf= 27 °, Zg/C = 0.02, Xol/C = 0.015).
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Figure 45 continued. Sensitivity of force and moment coefficients to the size of the flap gap for a

baseline configuration (Sf = 29 °, INS2D _f = 27 °, zg/c = 0.02, xol/c = 0.015).
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Figure 45 concluded. Sensitivity of force and moment coefficients to the size of the flap gap for a

baseline configuration (Sf = 29 °, INS2D _f = 27 °, Zg/C = 0.02, Xo]/C = 0.015).
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Figure46.Changein lift coefficientasafunctionof flapgapfor thebaselineconfiguration(_Sf= 29°,
INS2D8f = 27°, Xol/C= 0.015,ot= 0°).

equalto Zg/C= 0.04. For flap gapsgreaterthanZg/C- 0.04,bothturbulencemodelsunderpredictthe
rateof decreaseof lift coefficient.

TheBaldwin-BarthandSpalart-Allmarasturbulencemodelsareverysimilarin their formulation.
Bothareone-equationturbulencemodelswhichutilizeatransportequationfor turbulentviscosity(or
turbulentReynoldsnumber,which is relatedto turbulentviscosity).Thetwo principaldifferences
betweentheBaldwin-BarthandtheSpalart-AllmarasturbulencemodelsarethattheSpalart-Allmaras
modelhasamoresophisticatedtransitionmodelandtheSpalart-Allmarasmodelincludesanon-
viscousdestructiontermthatdependsondistanceto thewall [25]. Sinceall computationswere
performedassumingafully turbulentboundarylayer,thedifferencesin thetransitionmodelarenot the
sourceof thedisagreementin resultsshownin figure46. This leavesthenon-viscousdestructionterm
in theSpalart-Allmarasmodelasthesourceof thedifferencesobservedin figure46. Thenon-viscous
destructiontermis theterminvolvingCwlfw in equation (19). The function terrnfw is defined by

equations (22) through (24). The non-viscous destruction term in the Spalart-Allmaras turbulence

model was intended to address the "blocking" effect of the wall on the near-wall region of a boundary

layer [24]. The inclusion of the non-viscous destruction term in the Spalart-Allmaras turbulence model

allows it to match the experimental results more closely than the Baldwin-Barth model. The Solution

also converges to a steady-state much faster using the Spalart-Allmaras model than it does using the

Baldwin-Barth model. For these reasons, the Spalart-Allmaras turbulence model is used for all the

computations presented in this report.
The baseline performance of the NACA 632-215 ModB two-element airfoil with a static flap

deflection of 39 ° is shown in figure 47. Both experimental and computed results are shown. The flap

deflection angle for the computed results is 36 ° . Computations were performed for flap gaps of

zg/c = 0.02, 0.03, and 0.04. Computed results for a flap gap of Zg/C = 0.05 are not included because

converged steady-state solutions for the baseline configuration could not be obtained. This is due to

the large region of separated flow over the upper surface of the flap, which creates an unsteady flow
field.
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Figure 47. Sensitivity of force and moment coefficients to the size of the flap gap for a baseline

configuration (Sf = 39 °, INS2D 5f = 36 °, Zg/C = 0.02, Xol/C = 0.015).
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Figure 47 continued. Sensitivity of force and moment coefficients to the size of the flap gap for a

baseline configuration (Sf = 39 °, INS2D 8f = 36 °, zg/c = 0.02, Xo]/C = 0.015).
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Figure 47 concluded. Sensitivity of force and moment coefficients to the size of the flap gap for a

baseline configuration (Sf = 39 °, INS2D _Sf= 36 °, zg/c = 0.02, Xol/C = 0.015).
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Theexperimentalresultsfor lift coefficientshowastrongsensitivityto flap gap.At a flapgapof
Zg/C= 0.02,tufts indicatethattheflow overtheuppersurfaceof theflap ismostlyattached,with just a
smallregionof separatedflow overtheaft 5%of theflapchord.As theflapgapis increased,the lift
coefficientata givenangleof attackdecreasesrapidly. Tuftson theuppersurfaceof theflapindicated
thattheseparationpoint movedupstreamtowardtheflap leadingedgerapidlyasflapgapwas
increased.As theangleof attackapproachestheangleof attackfor Clmax,theseparationpointon the
flapuppersurfacemovesaft somewhatfor agivenflapgap,producingalocal increasein lift
coefficient. This isparticularlyevidentfor aflapgapof zJc = 0.03. Foratwo-elementairfoil, as
angleof attackis increased,thedownwashbehindthemainelementis increased,dueto theincreased
lift on themainelement.Thisreducestheeffectiveangleof attackfor theflap, reducingthelift on the
flap. In particular,thepressuresuctionpeakattheflap leadingedgeis reduced,whichmovesthe
separationpointon theflapuppersurfaceaft.

Thedragcoefficientfor astaticflapdeflectionof 39° isverysensitiveto flapgapalso.As canbe
seenin figure47, thedragcoefficientatmoderatelift coefficientsmorethandoublesasflapgapis
increasedfrom Zg/C= 0.02to zg/c= 0.05. Theshift aft of theflow separationpoint on theflap upper
surfaceathighanglesof attackmanifestsitselfasareductionin dragcoefficientathigh lift coefficients
in theplot of lift coefficientversusdragcoefficient.Thepitchingmomentcoefficientfor this
configurationis verysensitiveto flapgapaswell. As flapgapis increased,thepitchingmoment
coefficientversusangleof attackcurveshiftsin thepositivedirection.Theslopeof thepitching
momentcoefficientcurveis alsoreduced.

Thecomputationalresultsfor thisflapdeflectionangleexhibitthesametrendsastheexperimental
data.Thereis amoderatereductionin lift coefficientasflapgapis increasedfrom Zg/C= 0.02to
Zg/C= 0.03. Theshift in lift coefficientis lessthanthecorrespondingshift in experimentallift
coefficientfor thesamegapincrease.This isdueprimarilyto theseparationpointon theuppersurface
of theflapnotmovingupstreamrapidlyenoughasgapis increasedin thecomputedresults.Whenthe
flapgapis increasedfurtherto Zg/C= 0.04, thereductionin computedlift coefficientis almostdouble
thereductionobtainedin goingfrom aflapgapof Zg/C= 0.02to Zg/C= 0.03. Thecomputedlift
coefficientcurvesareshiftedupwardby approximatelyAC_ = 0.4 from the corresponding experimental

curves. The computed drag and pitching moment coefficient data also exhibit trends with increasing

flap gap that are similar to the experimental data. The principal reason for differences between

experimental and computed results at this flap deflection angle is the inaccuracy in the computed

separation point location on the flap upper surface. Some of the reasons for this inaccuracy were cited

above.

Lift-Enhancing Tabs on Configurations with Moderate Flap Angle

As mentioned in the section on test procedures, lift-enhancing tabs of several heights were tested

on all the baseline configurations of the NACA 632-215 ModB two-element airfoil. Tabs were located

at the trailing edges of the main element only, the flap only, and the main element and flap together.

Tabs placed at the main element trailing edge will be referred to as cove tabs. Tabs placed at the flap

trailing edge will be referred to as flap tabs. Computations were performed for all configurations

which included tabs with a height of zt/c = 0.005 and which had static flap deflection angles of 29 ° and

39 °. In addition, computations were performed for a configuration with a static flap deflection angle of

50 °, a flap gap of Zg/C = 0.04, and a flap overlap of Xol/C = 0.015. Both a baseline case and a

configuration with a cove tab and a flap tab with heights of zt/c = 0.01 were run.
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Figure 48. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (6f = 29 °, INS2D 6f = 27 °, zJc = 0.02, Xol/C = 0.015).

Figure 48 illustrates the effect of lift-enhancing tabs on the lift, drag, and pitching moment
coefficients of the NACA 632-215 ModB two-element airfoil. In this case, the static flap deflection

angle is 29 °, the flap gap is zJc = 0.02, and the flap overlap is Xol/C = 0.015. Both experimental and

computed results are shown for a cove tab, a flap tab, and a combination of cove tab and flap tab. All

tabs had a height of zt/c = 0.005.
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Figure 48 continued. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (Sf = 29 °, INS2D _f = 27 °, zg/c = 0.02, Xol/C = 0.015).

The cove tab has a minimal effect on the total lift coefficient of the two-element airfoil. The slope

of the lift coefficient versus angle of attack curve is reduced slightly, with the lift coefficient at an angle

of attack of 0 ° remaining essentially unchanged. The drag coefficient is increased by approximately 75

drag counts at all lift coefficients when a cove tab is added to the airfoil. The pitching moment

coefficient curve for the configuration with a cove tab is shifted in the positive direction by ACm = 0.03

compared to the pitching moment coefficient curve for the baseline configuration. The slope of the

pitching moment coefficient curve is unaffected by the addition of the cove tab. The computations
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Figure 48 concluded. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (Sf = 29 °, INS2D _f = 27 °, zg/c = 0.02, Xol/C = 0.015).

predict the effects on the force and moment coefficients of adding the cove tab to the baseline

configuration quite well. Even though the absolute magnitude of the force and moment coefficients is

over predicted by the computations, as discussed above in the section on the baseline configurations,

the magnitude of the change in force and moment coefficients due to the addition of the cove tab is

predicted accurately for this configuration.
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Figure 49. Effect of a cove tab on the pressure coefficient distribution of a baseline configuration (Sf =

29 °, INS2D 8f = 27 °, zg/c = 0.02, Xol/C = 0.015, ot = 0°).

A comparison of the pressure coefficient distribution on the main element and flap for the baseline

configuration and the configuration with a cove tab provides insight into how the cove tab affects the

two-element airfoil. Experimental and computed pressure coefficient distributions are shown in figure

49 for both configurations at an angle of attack of 0 °. The cove tab has two main effects on the

pressure coefficient distribution. First, the loading on the aft portion of the main element is increased.

This effect is primarily confined to the last 5% chord of the main element. The jump in pressure

coefficient at the trailing edge of the main element is increased by ACp = 0.8. The second effect is a
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reduction in the leading edge suction peak on the flap. The suction peak is reduced by ACp = 0.6.

This effect is confined to the flap upper surface leading edge region. The pressure coefficients on the

flap lower surface and the aft 50% of the upper surface remain essentially unchanged. The computed

results indicate changes in the pressure coefficient distribution which agree very well with the

experimental results.

The changes in the pressure coefficient distribution can be used to explain the changes observed in

the force and moment coefficients due to the addition of the cove tab to the airfoil. The increase in lift

coefficient due to the increased loading on the aft portion of the main element is offset by the reduction

in lift coefficient on the flap due to the reduction in the suction peak. Apparently, as angle of attack is

increased, the reduction in lift coefficient on the flap becomes larger than the increase in lift coefficient

on the main element which results in a lower slope of the lift coefficient curve. Reducing the suction

peak at the leading edge of the flap while maintaining the pressure coefficient distribution on the

remainder of the flap unchanged causes an increase in the pressure drag acting on the flap. The drag is

also increased by the base drag acting on the cove tab. This drag can be approximated by multiplying

the cove tab area by the jump in pressure coefficient at the trailing edge of the main element. It is

unclear whether the changes in pressure coefficient distribution on the main element increase or

decrease pressure drag on the main element. The increased negative pressure coefficient on the upper

surface will increase pressure drag while the increased positive pressure coefficient on the lower

surface will decrease pressure drag. The primary cause for the shift in pitching moment coefficient in

the positive direction when a cove tab is added to the configuration is the reduction in the suction peak

at the flap leading edge.

Returning to figure 48, it is evident that adding a flap tab to the baseline configuration produces a

significantly different effect than adding a cove tab. The addition of a flap tab produces a substantial

increase in lift coefficient at all angles of attack, compared to the lift coefficient at the same angle of

attack for the baseline configuration. The lift coefficient curve is shifted upward by AC1 = 0.2. The

slope of the lift coefficient curve is unaffected by the addition of the flap tab. The maximum lift

coefficient is increased by AClmax = 0.15 when a flap tab is added and the angle of attack at which

Clmax occurs is reduced by 0.5 °. The drag coefficient for the configuration with a flap tab is actually

reduced by approximately 30 drag counts at all lift coefficients compared to the results for the baseline

airfoil. The pitching moment coefficient curve for the configuration with a flap tab is shifted in the

negative direction by ACre = 0.07. Again, the computed results accurately predict the changes in the

force and moment coefficients due to the addition of a flap tab to the baseline airfoil.

A comparison of the pressure coefficient distribution on the main element and flap for the baseline

airfoil and the configuration with a flap tab is shown in figure 50 for an angle of attack of 0 °. Both

experimental and computed results are included. The flap tab produces a markedly different effect on

the pressure coefficient distribution on the main element and flap than the cove tab did. The flap tab

increases the loading on the aft portion of the flap, much as the cove tab did on the main element.

However, the flap tab also increases the overall circulation for the flap, as can be seen by the pressure

coefficient distribution on the flap. This creates an increase in lift coefficient on the flap. The

circulation for the main element is also increased, leading to a further increase in lift coefficient of the

overall airfoil. The increase in circulation about the main element is a direct consequence of the

increased lift on the flap. The shift of the pitching moment coefficient curve in the negative direction

observed when the flap tab was added to the configuration can also be attributed to the increased lift

acting on the flap.
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Figure 50. Effect of a flap tab on the pressure coefficient distribution of a baseline configuration

(Sf = 29 °, INS2D 8f = 27 °, zg/c = 0.02, Xol/C = 0.015, o_ = 0°).
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It is moredifficult in thiscaseto link changesin thepressurecoefficientdistributionto the
observedchangesin dragcoefficientwhenaflaptabisaddedto theairfoil, sincetheentirepressure
coefficientdistributionchanges.Themagnitudeof thepressurecoefficientincreasesfairly uniformly
overthewholeairfoil (mainelementandflap),with theexceptionof theleadingedgeregionsof the
mainelementandflap. Theleadingedgesuctionpeaksshowalargerincreasein magnitudethanis
evidentovertherestof theairfoil surface.Thismayaccountfor theslightreductionin dragcoefficient
observedwhentheflap tabis addedto theairfoil. Notethat,asin thecaseof thecovetab,theforce
actingontheflap tabin a directionnormalto thetabcanbeestimatedby multiplyingthejump in
pressurecoefficientattheflap trailingedgeby theareaof theflap tab. In thiscase,however,only a
componentof this forceactsin thedragdirectionsincetheflap is deflectedto anangleof 29°.

Returningto figure48afinal time,theimpactontheforceandmomentcoefficientsof addinga
covetabandaflap tabcombinationto thebaselineairfoil canbeseen.Thechangesin theforceand
momentcoefficientsof thebaselineairfoil appearto bealinearcombinationof thechangescausedby
thecovetabandtheflap tabindividually. Thelift coefficientcurveis shiftedupwardby ACt = 0.2,

just as the case for the configuration with only a flap tab. However, the slope of the lift coefficient

curve is slightly reduced relative to the lift coefficient curves for the baseline and the flap tab only

configurations. This is similar to the lift coefficient curve for the configuration with only a cove tab.

The drag coefficient for the configuration with both cove and flap tabs is slightly less than the drag

coefficient for the configuration with just a cove tab at all lift coefficients. The pitching moment

coefficient curve is shifted in the negative direction, but the shift is not as great as it is for the

configuration with just a flap tab. The shifts in the force and moment coefficient curves predicted by

the computed results match the experimental data quite well.

Figure 51 presents a comparison of the pressure coefficient distribution on the main element and

flap for the baseline configuration with the distribution for a configuration with both cove and flap tabs

of height zt/c = 0.005. The angle of attack is 0 ° and both experimental and computed results are

included. The plots presented in figure 51 further support the contention that the changes in airfoil

performance induced by the combination of a flap tab and a cove tab are just the sum of the changes

induced by the individual tabs. Note that the pressure coefficient distributions presented in figure 51

indicate an increase in circulation on both the flap and the main element, as was the case for the

configuration with just a flap tab. In addition, however, the loading on the aft portion of the main

element is increased and the suction peak on the flap leading edge is decreased, as was the case for the

configuration with just a cove tab. There is general agreement between the experimental and computed

results shown in figure 51.

Having established that the results computed using INS2SD-UP for the various tab configurations

exhibit the same trends as the experimental results, the detailed nature of the solution can be used to

obtain further information about the flow field which is not available experimentally. Figure 52 shows

a computed streamline trace around the cove tab at the trailing edge of the main element. The flap

deflection angle for the computed results is 27 °, the gap is zjc = 0.02, and the angle of attack is 0 °.

The Computational Fluid Dynamics (CFD) post-processing program PLOT3D [44] was used to

generate Figure 52. PLOT3D allows sets of streamlines to be started at user-specified grid points

within the composite grid. Streamlines can be traced upstream and downstream from the starting

point. One of the limitations of PLOT3D is that streamline traces cannot cross wake boundary lines

within a C grid. For composite grids, PLOT3D also will not allow streamline traces which start in one

grid to cross into another grid. Obtaining adequate streamline definition in a composite grid composed

of individual C grids requires sets of streamlines to be started on both sides of the wake boundary lines

and within each individual grid. The discontinuities in the streamline traces observed in the wake
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Figure 51. Effect of a cove tab and flap tab combination on the pressure coefficient distribution of a

baseline configuration (Sf = 29 °, INS2D 8f = 27 °, Zg/C = 0.02, Xo]/C = 0.015, c_ = 00).
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Figure52.Streamlinepatternin vicinity of covetab,computedusingINS2D-UP.

Figure53.Streamlinepatternin vicinity of flap tab,computedusingINS2D-UP.
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boundaryline regionin figure52arearesultof thelimitationsof PLOT3Dandnotdueto anyflow
phenomena.

Theflow field aroundthecovetabis dominatedbythreedistinctstructures.A regionof
recirculatingflow isevidentupstreamof thetab. Twocounter-rotatingregionsof recirculatingflow
existaft of thecovetab. Theupperrecirculationregionaft of thetabis thestrongestof thethree.Note
thatfluid fromthemainelementuppersurfaceisentrainedaroundthetoprecirculationregionaft of the
tab,alongthetabaft surface,andupstreamalongthetip of thetabbeforereversingdirectionandgoing
downstream.Theflow field indicatedby thecomputedstreamlinesis consistentwith theflow field
aroundaGurneyflaphypothesizedby Leibeck[5] andobservedatlow Reynoldsnumberin awater
tunnelby NeuhartandPendergraft[10].

Streamlinetracesaroundaflap tabareshownin figure53. Althoughthestreamlinepatternfor the
flap tabis similarto theonefor thecovetab,thereis onenotableexception.Thereis noclosedlower
recirculationregionaft of thetabastherewasbehindthecovetab. Fluid from theupperflapsurfaceis
entrainedaroundtheupperrecirculationregionaft of thetab,backtowardthetab,andthenturnedback
downstream.Apparently,it is thepresenceof theflapuppersurfacenearthecovetabwhichturnsthe
flow sufficientlyto createthelowerrecirculationregionaft of thecovetab.

If thebaselineconfigurationis changedsothattheflap gapis increasedto Zg/C= 0.05,theeffect
of thetabson theforceandmomentcoefficientcurvesis somewhatdifferentthanit wasatthesmaller
flapgapsetting,asshownin figure 54. In thiscase,addingacovetabto theconfigurationproduces
anupwardshift of the lift coefficientcurveof AC1 = 0.1 relative to the lift coefficient curve for the

baseline case. The computed results predict a slightly larger upward shift in lift coefficient of
AC1 = 0.15 when a cove tab is added to the baseline configuration. The experimental drag coefficient

for the configuration with a cove tab increases by as much as 100 drag counts at moderate lift

coefficients relative to the baseline configuration. The computed drag coefficient at a given lift

coefficient for the configuration with a cove tab, on the other hand, is actually slightly lower than drag

coefficient for the corresponding baseline configuration. Note that the magnitude of the computed drag

coefficient for this baseline configuration is approximately 50 drag counts higher than the experimental

drag coefficient at all lift coefficients. This is probably due to differences between the computed and

experimental location of the flow separation point on the flap upper surface near the trailing edge. The

experimental pitching moment coefficient is essentially unaffected by the addition of the cove tab. The

computed pitching moment coefficient curve is shifted in the negative direction a small amount
(ACm = 0.01) when a cove tab is added to the baseline configuration.

Adding a flap tab to the baseline configuration causes an upward shift in the lift coefficient curve of

AC1 = 0.22 relative to the lift coefficient curve for the baseline configuration. The drag coefficient at a

given lift coefficient remains unchanged when a flap tab is added to the baseline configuration. The

flap tab shifts the pitching moment coefficient curve in the negative direction by ACre = 0.07. The

changes in the force and moment coefficients due to the addition of the flap tab are accurately predicted

by the computed results.

Adding both a cove tab and a flap tab to the baseline configuration produces the largest upward
shift in the lift coefficient curve relative to the baseline case. The magnitude of the shift is ACt = 0.30.

This configuration also exhibits the largest drag coefficient increase compared to the baseline case.

The drag coefficient is increased by 150 drag counts at moderate lift coefficients. The pitching moment

coefficient curve is almost identical to the corresponding curve for the configuration with just a flap

tab. The computed results for this configuration predict the changes in lift and pitching moment

coefficient well, but the increase in drag coefficient observed in the experimental results is not
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Figure 54. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (Sf = 29 °, INS2D 8f = 27 °, Zg/C = 0.05, Xol/C = 0.015).
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Figure 54 continued. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (6f = 29 °, INS2D 6f = 27 °, zg/c = 0.05, Xo]/C = 0.015).
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Figure 54 concluded. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (Sf = 29 °, INS2D _f = 27 °, zJc = 0.05, xoJc = 0.015).

duplicated in the computed results. This configuration actually has the lowest computed drag

coefficient at a given lift coefficient as can be seen in figure 54.

An examination of the pressure coefficient distribution on the main element and flap for the

baseline configuration and the various configurations with tabs provides some additional insight into
how the tabs affect the performance of the two-element airfoil when the flap gap is large (Zg/C = 0.05).

Figure 55 shows a comparison of the pressure coefficient distributions for the baseline case and a

configuration with a cove tab. Both the experimental and computed results are included. In general,
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Figure 55. Effect of a cove tab on the pressure coefficient distribution of a baseline configuration

(_Sf= 29 °, INS2D 5f = 27 °, zg/c = 0.05, Xol/C = 0.015, o_= 0°).

the addition of a cove tab to the configuration affects the pressure coefficient distribution in a manner

similar to that presented in figure 49 for a flap gap of zg/c = 0.02. The suction peak at the leading edge

of the flap is reduced and the loading on the aft portion of the main element is increased. However, the

circulation about the main element is also increased for the configuration with a large flap gap when a

cove tab is added. This was not observed for the configuration with the small flap gap. It is this

increase in circulation about the main element that accounts for the increase in lift coefficient for the

configuration with a cove tab relative to the baseline case.
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b) Computed pressure coefficient distribution.

Figure 56. Effect of a flap tab on the pressure coefficient distribution of a baseline configuration

(Sf = 29 °, INS2D 8f = 27 °, Zg/C = 0.05, Xol/C = 0.015, ot = 0°).

The effect of a flap tab on the pressure coefficient distribution for the configuration with a flap gap

of Zg/C -- 0.05 is illustrated in figure 56. The changes in the pressure coefficient distribution caused by

the addition of the flap tab do not appear to be sensitive to the size of the flap gap, at least over a

reasonable range of flap gaps. As in the case of the configuration with a flap gap of Zg/C = 0.02, the

circulation about the flap and the main, element are both increased when a flap tab is added.
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Figure 57. Effect of a cove tab and flap tab combination on the pressure coefficient distribution of a

baseline configuration (Sf = 29 °, INS2D _f = 27 °, Zg/C = 0.05, Xol/C = 0.015, o_ = 0°).

Adding both a cove tab and a flap tab to the baseline configuration affects the pressure coefficient

distribution as shown in figure 57. The circulation about the flap is increased and the suction peak at

the leading edge is reduced. Comparing with the results presented in figure 51 for the same

configuration with a flap gap of Zg/C = 0.02, the changes in the flap pressure coefficient distribution

caused by the tabs do not appear to be very sensitive to the size of the flap gap. The tabs induce a

much larger increase in the circulation about the main element for this configuration than was evident at
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thesmallerflapgap. Thedifferencecanbeattributedprimarily tothe increasein circulationaboutthe
mainelementcausedby thecovetab,asdiscussedabove.

At largeflapgaps(Zg/C= 0.05)the individualwakesfrom theflap andthemainelementcanbe
identifiedin thetotalpressureprofileof thewakemeasuredwith thewakerakeatadistanceequalto
onechordlengthbehindtheairfoil. Thewaketotalpressureprofilesfor thebaselineconfigurationand
variousconfigurationswith tabsareshownin figure58. For thisdata,thewakerakewasheldata
fixedpositionin thetunnel. Sincetheangleof attackwasheldconstantat 0°, theangularorientationof
thewakerakedid nothavetobechangedfor anyof theseconfigurations.Theindividualmainelement
andflapwakesfor thebaselineconfigurationareeasilyidentifiable,with the largertotalpressure
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Figure 58. Effect of tabs on the total pressure distribution in the wake 1 chord length aft of the airfoil

trailing edge for a baseline configuration (Sf = 29 °, Zg/C = 0.05, Xol/C = 0.015).

deficit corresponding to the main element wake. The addition of a cove tab to the main element causes

the main element wake to thicken substantially. At a distance of one chord length behind the airfoil,

the main element and flap wakes have merged. The increased drag caused by the addition of the cove

tab is evident in the larger total pressure deficit of the wake. The increased circulation about the main

element caused by the cove tab can also be inferred from the shift to the right in the peak total pressure

deficit of the main element wake. Adding a flap tab to the baseline configuration does not appreciably

change the shape of the wake total pressure profile or the magnitude of the peak total pressure deficit in

the main element or flap wakes. The individual main element and flap wakes are still visible in the total

pressure profile. The wake total pressure profile is shifted to the right, however, indicating an increase

in circulation about both the flap and the main element. Adding both a cove tab and a flap tab to the

baseline configuration causes a broadening of the main element wake total pressure profile. The main

element wake and the flap wake have almost completely merged. This wake profile exhibits the largest

shift to the right, indicating this configuration has the largest increase in circulation about the airfoil.

This wake profile also has the largest total pressure deficit, indicating that this configuration has the

highest drag. All of these observations are consistent with the force and moment data presented above.
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Figure 59. Velocity vector plots obtained from INS2D-UP solution (8t:- 27°, z_/c_ -0.05,
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c) Flaptabconfiguration.
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Figure 59, concluded. Velocity vector pJots obtained from INS2D-UP solution (8I. = 27 °, z Jc -0.05,

Xol/C - 0.015, o_ - 0°).
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Thecomputedresultsfor thisbaselineconfigurationandthevariousassociatedtabconfigurations
canbeusedto providefurtherdetailson theeffectthetabshaveonthewakesof themainelementand
flap. PLOT3Dwasusedto constructvelocityvectorplotsfrom thecomputedsolutions.Thevelocity
vectorsarecoloredaccordingto thevelocitymagnitudefor eachvector. Figure59showsvelocity
vectorplotsfor thebaselineconfigurationandfor eachof thethreetabconfigurations.In figure 59(a),
thewakesfrom thebaselinemainelementandflapareclearlyvisibleasyellow andorangecolored
regionsthatapproximatelyfollow thewakeboundarylineswithin eachgrid. Whenacovetabis added
to themainelement,thewakefromthemainelementbecomesmuchthickerandthevelocitymagnitude
within thewakeis lowerthanit wasfor thebaselinecase,asseenin figure59(b). Themainelement
wakefor thecovetabconfigurationis alsoturnedtowardtheflapuppersurfacemore,indicating
highercirculationon themainelement.Addingaflaptabto thebaselineconfigurationproducesa
similarthickeningof theflap wakeandareductionin thevelocitymagnitudewithin thewake,as
shownin figure 59(c). Thewakesof themainelementandtheflap for aconfigurationwith botha
covetabandaflap tabcanbeseenin figure59(d).

Lift-Enhancing Tabs on Configurations with High Flap Angle

All of the lift-enhancing tab results presented to this point have been for a configuration with a

static flap deflection angle of 29 °. Increasing the flap deflection angle to 39 ° produces some changes in

the way the lift-enhancing tabs affect the performance of the two-element airfoil. A flap deflection

angle of 39 ° produces the highest lift coefficient at a given angle of attack for this airfoil. Even at a flap

gap of zJc = 0.02, a small amount of separated flow exists on the upper surface of the flap near the

trailing edge. If the flap gap is made larger, the flow separates over much of the flap upper surface and

the lift coefficient decreases rapidly at all angles of attack. If the flap deflection angle is made larger,

the flow also separates on the upper surface of the flap.

Figure 60 shows the effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration with a static flap deflection angle of 39 ° and a flap gap of Zg/C = 0.02. Both experimental

and computed results are included. The changes produced in the force and moment coefficients of the

baseline configuration by the tabs are very similar to those shown in Figure 48 for a static flap

deflection angle of 29 ° and the same flap gap. The addition of a cove tab to the baseline case does not

change the lift coefficient at low angles of attack. The slope of the lift coefficient curve is significantly

reduced compared to the baseline case as angle of attack is increased. The reduction in slope of the lift

coefficient curve is larger for the configuration with a flap deflection angle of 39 ° than it was for the

configuration with a 29 ° flap deflection angle. The computed results indicate a similar reduction in the

slope of the lift coefficient curve as angle of attack is increased. When a flap tab is added to the

baseline configuration, the lift coefficient curve is shifted upward by ACl = 0.15. The computed

results predict a larger increase in lift coefficient when a flap tab is added to the configuration than was

observed experimentally. Adding both a cove tab and a flap tab to the baseline configuration shifts the

lift coefficient curve upward by the same amount that adding a flap tab only caused. However, the

slope of the lift coefficient curve is reduced as angle of attack is increased, similar to the configuration

with only a cove tab. The computed results indicate the same type of changes.

The drag coefficient increases by as much as 180 drag counts when a cove tab is added to the

configuration. This increase is much larger than was observed for the configuration with a 29 ° flap

deflection angle. The computed increase in drag coefficient for the cove tab configuration is

underpredicted by about 80 drag counts. Adding a flap tab to the baseline configuration does not

increase the drag coefficient at a given lift coefficient. The computed drag coefficient for the
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Figure 60. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (_f = 39 °, INS2D 5f = 36 °, Zg/C = 0.02, Xol/C = 0.015).
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Figure 60 continued. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (Sf = 39 °, INS2D 8f-- 36 °, zg/c = 0.02, Xol/C = 0.015).
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Figure 60 concluded. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (_Sf= 39 °, INS2D _f = 36 °, zg/c = 0.02, Xol/C = 0.015).

108



configuration with a flap tab is actually slightly lower than the baseline case for a given lift coefficient.

The configuration with both a cove tab and a flap tab has essentially the same drag coefficient at a

given lift coefficient as the configuration with just a cove tab, as indicated by both the experimental and

computed results.

The changes in pitching moment coefficient due to the addition of lift-enhancing tabs to the baseline

airfoil are very similar to those shown in figure 48 for the configuration with a 29 ° flap deflection

angle. The addition of a cove tab to the baseline configuration shifts the pitching moment coefficient

curve in the positive direction, while adding a flap tab to the baseline configuration shifts the pitching

moment coefficient curve in the negative direction. The shift in the pitching moment coefficient curve

for the configuration with both a cove tab and a flap tab is approximately a linear combination of the

changes caused by the individual tabs. The trends predicted by the computed results match those

observed experimentally.

The pressure coefficient distribution on the main element and the flap at two different angles of

attack can be used to understand the reduction in the slope of the lift coefficient curve with increasing

angle of attack when a cove tab is added to the baseline configuration. Figure 61 shows the pressure

coefficient distribution on the main element and the flap for the baseline configuration and a

configuration with a cove tab included. Both experimental and computed results are shown for angles

of attack of 0 ° and 8 °. The data for an 8 ° angle of attack is plotted at the same scale as the data for a 0 °

angle of attack to facilitate comparisons between the two cases. The suction peak at the main element

leading edge does not change when a cove tab is added to the baseline configuration, so the fact that

the suction peak is clipped in the plot of the results at an angle of attack of 8 ° does not affect the

comparison. The addition of the cove tab to the baseline configuration reduces the suction peak at the

leading edge of the flap; however, the decrease is larger at an angle of attack of 8 ° than it is at an angle

of attack of 0 °. As mentioned previously, when the angle of attack of the airfoil is increased, the

circulation about the main element increases. This causes a larger downwash velocity behind the

trailing edge of the main element, which reduces the effective angle of attack of the flap. A

consequence of the lower effective angle of attack for the flap is a reduction in the suction peak at the

leading edge as angle of attack for the airfoil is increased. The suction peak at the flap leading edge is

reduced by ACp = 0.4 for the baseline configuration and by ACp = 0.5 for the configuration with a

cove tab. Adding a cove tab to the main element when the flap gap is small accentuates the reduction in

the suction peak at the flap leading edge, which leads to a reduction in the slope of the lift coefficient

curve as angle of attack is increased.
Increasing the flap gap of the baseline configuration with a 39 ° flap deflection angle to Zg/C = 0.04

causes the flow over a large percentage of the flap upper surface to be separated. This case is clearly a

non-optimum baseline configuration, as can be seen by referring back to figure 47 and looking at the

lift coefficient curves for different flap gaps. The presence of a large region of separated flow over the

upper surface of the flap greatly affects the effectiveness of the various lift-enhancing tabs, as can be

seen in figure 62. Adding a cove tab to the baseline configuration has a tremendous impact on the lift

coefficient curve, shifting it upward by AC1 = 0.45. The shift in the lift coefficient curve predicted by

the computations is less, with AC1 = 0.30. The flap tab is less effective at increasing lift coefficient for

this configuration. The addition of a flap tab to the baseline configuration only shifts the lift coefficient

curve upward by AC1 = 0.10. The computed results for the flap tab configuration are more optimistic,

predicting an upward shift of AC1 = 0.17. Using a combination of a cove tab and a flap tab on the

baseline configuration provides the largest upward shift of the lift coefficient curve. In this case the lift
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Figure 61. Effect of a cove tab on the pressure coefficient distribution of a baseline configuration

(_f = 39 °, INS2D 5f = 36 °, Zg/C = 0.02, Xol/C = 0.015, o_= 0°).
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Figure 61 concluded. Effect of a cove tab on the pressure coefficient distribution of a baseline

configuration (Sf = 39 °, INS2D 5f = 36 °, Zg/C = 0.02, xol/c = 0.015, (z = 8°).
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Figure 62. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (_f = 39 °, INS2D _f = 36 °, Zg/C = 0.04, xo]/c = 0.015).
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Figure 62 continued. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline

configuration (Sf = 39 °, INS2D 8f = 36 °, Zg/C = 0.04, Xol/C = 0.015).
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Figure 62 concluded. Effect of lift-enhancing tabs on the force and moment coefficients of a baseline
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coefficientcurveis shiftedupwardby ACl = 0.65. The computed results predict an upward shift of

AC1 = 0.50.

The effect of the tabs on the drag coefficient for this configuration is significantly different than

what was presented previously for the other configurations. The drag coefficient for the configuration

with a cove tab is lower by as much as 75 drag counts compared to the drag coefficient for the baseline

configuration at the same lift coefficient. The computed results indicate an even larger reduction in

drag coefficient when a cove tab is added to the baseline configuration. Adding a flap tab to the

baseline case actually increases the drag coefficient by as much as 100 drag counts at moderate lift

coefficients and has line effect on drag coefficient at high lift coefficients. The computed results

indicate either a drag coefficient reduction or no change for all lift coefficients. The configuration with

the combination of a cove tab and flap tab has the same drag coefficient as the baseline case when the

two configurations are at the same lift coefficient. The computed results predict a drag coefficient for

this case which is lower than that for the baseline configuration.

The effect on the pitching moment coefficient curve of adding a cove tab to the baseline

configuration is a large shift of ACre = 0.08 in the negative direction. The slope of the pitching

moment coefficient curve is also increased when a cove tab is added. The addition of a flap tab to the

baseline case produces a smaller shift of ACre = 0.02 in the negative direction and the slope is not

affected. The largest shift, ACm = 0.13, in the negative direction occurs for the configuration with

both a cove tab and a flap tab. The slope of the pitching moment coefficient curve for this case is

increased, similar to the configuration with just a cove tab. The computed results indicate similar

trends, with the exception that the shift in the negative direction of the pitching moment coefficient

curve for the configuration with only a flap tab is slightly greater than it is for the cove tab

configuration instead of less, as observed experimentally.

To begin to explain the effects of the lift-enhancing tabs on the force and moment coefficient curves

for this baseline configuration, the pressure coefficient distribution for the baseline case and the

various tab configurations are compared. Figure 63 shows a comparison of the experimental and

computed pressure coefficient distributions on the main element and flap for the baseline case and a

cove tab configuration. The angle of attack for the data is 0 °. The reduction of the suction peak at the

flap leading edge, characteristic of cove tab configurations, is evident. This reduction in suction peak

appears to eliminate a region of separated flow on the upper surface of the flap that exists for the

baseline configuration. The region of near constant pressure coefficient over the aft 30% of the flap

upper surface, which is characteristic of a region of separated flow, is eliminated when a cove tab is

added to the configuration. This change is easier to see in the computed results than it is in the

experimental data. The reduction of the leading edge suction peak decreases the adverse pressure

gradient which the turbulent boundary layer must traverse between the leading and trailing edges of the

flap. The smaller adverse pressure gradient allows the boundary layer to remain attached, rather than

separating. Note that the reduction in the leading edge suction peak on the flap is much greater in the

computed results than it is in the experimental results. This is probably due to differences in the

experimental and computed flow separation locations on the baseline configuration. The magnitude of

the suction peak on the flap leading edge for the cove tab configuration is well predicted by the

computed results. Computed streamlines over the flap for the baseline and cove tab configurations,

illustrated in figures 64(a) and 64(b) respectively, show graphically how the cove tab eliminates the

separated flow over the flap upper surface.

Returning to figure 63, it is evident that the majority of the increase in lift coefficient caused by

adding a cove tab to the configuration is due to the increase in circulation about the main element. The

computed results predict less of an increase in circulation about the main element when the cove tab is
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Figure 63. Effect of a cove tab on the pressure coefficient distribution of a baseline configuration

(_f = 39 °, INS2D _f = 36 °, Zg/C = 0.04, Xol/C = 0.015, _z = 0°).

added. Again, this can be attributed to differences in the experimental and computed flow separation

locations for the baseline configuration. Part of the large increase in circulation about the main element

is due to the fact that the cove tab is more effective at increasing the circulation about the main element

when the flap gap is large, as was seen earlier (see figure 54). In addition, the elimination of the flow

separation over the flap upper surface also increases the circulation about the main element. The

amount of circulation that the flap induces on the main element, for a given flap angle and position, is a

function of both the total lift or circulation acting on the flap and the distribution of the lift on the flap.
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a) Baseline configuration.

b) Configuration with cove tab.

Figure 64. Streamline pattern around flap for a configuration with a 39 ° flap deflection

angle, as computed using INS2D-UP.
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Figure 65. Effect of a flap tab on the pressure coefficient distribution of a baseline configuration

(Sf = 39 °, INS2D _f = 36 °, Zg/C = 0.04, Xo]/C = 0.015, o_= 0°).

Flow separation on the flap upper surface can change the total lift acting on the flap, the distribution of

lift on the flap, or both. The total lift acting on the flap is generally reduced and the center of lift on the

flap moves aft when large regions of separated flow exist over the flap upper surface. The effective

shape of the flap becomes a bluff body comprised of the actual flap plus the recirculation bubble in the

separated flow region. These changes reduce the effectiveness of the flap. Adding a cove tab to the

configuration can eliminate the flow separation over the flap upper surface and improve the

118



performanceof theflap. Theeliminationof theseparatedflow regionovertheflap alsoaccountsfor
thereductionin dragobservedin figure62for thecovetabconfiguration.

Figure65showsacomparisonof thepressurecoefficientdistributionsonthemainelementand
flapfor thebaselinecaseandaflap tabconfiguration.Bothexperimentalandcomputedresultsare
presented.Looking attheexperimentalpressurecoefficientdistributionontheflap, it appearsthatthe
flaptabcausestheseparatedflow regionthatexistsfor thebaselineconfigurationto becomeworse.

C
P

-5

-4

-3

-2

-1

0

1

2 ,,,i,,,i,,,I,,,I,,,I,,,I,,,I,

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

rdc

a) Experimental pressure coefficient distribution.

...... I' '1--_ no tabs |' I ......

i i Zft /c=O'O0 i

I 1

1.4

C
P

-5

-4

-3

-2

-1

0

1

2

-0.2

_ no tabs [ q -_-_-_

.......l__ _Zc,/C=0.005a41
.............. ' ................... i..............

: ._ ; _

.......

0 0.2 0.4 0.6 0.8 1 1.2 1.4
X/C

b) Computed pressure coefficient distribution.

Figure 66. Effect of a cove tab and flap tab combination on the pressure coefficient distribution of a

baseline configuration (Sf = 39 °, INS2D 8f = 36 °, Xg/C = 0.04, Xol/C = 0.015, a = 0°).
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This observation is consistent with the increase in drag coefficient seen in figure 62 for the flap tab

configuration at moderate lift coefficients. There is an increase in the loading on the aft portion of the

flap and the circulation about the flap is increased slightly. The circulation about the main element is

also increased slightly when the flap tab is added to the configuration. Insufficient experimental data is

available to ascertain why the separated flow region over the flap grew worse when the flap tab was

added. The computed results indicate a small increase in the circulation about both the main element

and the flap. The separated flow region over the flap is reduced slightly when a flap tab is added,

according to the computed data. This is consistent with the reduction in the computed drag coefficient

seen in figure 62 for the flap tab configuration.

A comparison of the pressure coefficient distributions for the baseline case and the configuration

with both a cove tab and a flap tab is shown in figure 66. The angle of attack is 0 ° and both

experimental and computed results are included. The suction peak at the flap leading edge is reduced

and the region of separated flow over the flap upper surface, present in the baseline case, is eliminated.

The loading on the aft portion of the flap is increased, as is the overall circulation of the flap. The

elimination of the separated flow and the increase in the circulation about the flap combine to create a

large increase in circulation about the main element. The majority of the increase in lift coefficient of

the airfoil, which occurs when the cove tab and flap tab are added to the configuration, is due to the

increase in circulation about the main element. The computed results indicate the same types of trends

as the experimental data. The increase in circulation about the main element resulting from the addition

of the tabs is less than was observed experimentally. This is due primarily to the difference in

experimental and computed flow separation locations on the flap upper surface for the baseline

configuration. The computed separation location appears to occur further aft on the flap than the

experimental data indicates.

Overall Performance of Lift-Enhancing Tabs

All the results presented to this point have been for tabs with a height of zt/c = 0.005. Figure 67

shows the effect of varying tab height on the change in lift coefficient relative to the baseline case for

configurations with flap deflection angles of 29 ° and 39 ° . Experimental results for three different tab

configurations are presented at an angle of attack of 0 °. The three configurations are cove tab only,

flap tab only, and cove tab and flap tab together. It should be noted again that for configurations with

a cove tab and a flap tab, the tabs were of the same height. Computations were not performed for tab

heights other than zt/c = 0.005; hence, computed results are not included in figure 67. For

configurations with a flap deflection angle of 29 °, all three tab configurations produce a nonlinear

increase in lift coefficient as tab height is increased. The increase in lift coefficient caused by the cove

tab appears to be reaching an asymptotic value of ACI = 0.13 at a tab height of Zct/C = 0.01. The

change in lift coefficient for configurations with a flap tab only and a combination of cove tab and flap
tab is still rising at a tab height of zt/c = 0.01. The configuration with a combination of cove tab and

flap tab produces the largest increases in lift coefficient, with a ACt = 0.4 at a tab height of zt/c -- 0.01.

For configurations with a flap deflection angle of 39 ° and a flap gap of Zg/C = 0.04, the flap tab is

the least effective configuration for increasing the lift coefficient. The flap tab produces a nearly linear

increase in lift coefficient with increasing tab height. At a flap tab height of zft/c = 0.01 the change in

lift coefficient is AC1 = 0.17. By contrast, on a configuration with a flap deflection angle of 29 °, the

flap tab produces a change in lift coefficient ofAq = 0.31 for a flap tab height of zft/c = 0.01. The

reason for the reduced performance of the flap tab at a flap deflection angle of 39 ° is the presence of a

separated flow region over the flap upper surface. The cove tab, on the other hand, produces large
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Figure 67. Effect of tab height on lift coefficient increment for two different flap deflection angles.

increases in lift coefficient for this configuration. The increase in lift coefficient caused by the cove tab

has reached an asymptotic value of AC1 = 0.47 at a cove tab height of Zct/C = 0.005. Again, the

configuration with a combination of cove tab and flap tab produces the largest increase in lift

coefficient at a given tab height. The change in lift coefficient appears to be reaching an asymptotic

value of AC] = 0.70 at a tab height of zt/c = 0.01. It is possible that if the cove tab height were held
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Figure 68. Effect of flap gap variations on configurations with a cove tab.

constant at Zct/C = 0.005 while the flap tab height was increased, further increases in lift coefficient

could be obtained; however, this was not investigated.

An interesting benefit of using cove tabs on a multi-element airfoil is that they reduce the sensitivity

of the lift of the multi-element airfoil to the size of the flap gap. This is illustrated in figure 68. Lift

coefficient for a configuration with a cove tab is plotted as a function of angle of attack for several

different flap gap sizes. A plot of the lift coefficient curve for the baseline configuration is included for

reference. Results are shown for both a configuration with a 29 ° flap deflection angle and a
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configuration with a 39 ° flap deflection angle. All of the data presented in figure 68 are experimental

results. At both flap deflection angles, the lift coefficient curves for the configurations with a cove tab

are coincident with or shifted upward slightly from the reference baseline lift coefficient curve. The

only exception to this is the cove tab configuration with a flap gap of zg/c = 0.02. For this

configuration the lift coefficient curve is coincident with the baseline lift coefficient curve at low angles

of attack. The slope of the lift coefficient curve for this configuration, however, is less than that of the

baseline curve, leading to lower lift coefficients than the baseline case at higher angles of attack.

Comparing figure 68 with the experimental results shown in figures 45 and 47, it is evident that adding

a cove tab to the baseline configuration has reduced the sensitivity to flap gap. This is particularly true

for the configuration with a 39 ° flap deflection angle. The lift coefficient for the baseline configuration

drops off rapidly as the flap gap is increased (figure 47) due to flow separation over the upper surface

of the flap. Adding a cove tab to the configuration eliminates the flow separation, as shown

previously, and greatly reduces the sensitivity to the size of the flap gap.

Performance of the baseline configuration that produced the highest lift coefficients was compared

with performance of the three tab configurations (cove tab only, flap tab only, and cove tab and flap

tab combination) which produced the highest lift coefficients. Only the experimental data is considered

in this comparison since the computed results for a flap deflection angle of 39 ° did not consistently

predict the separation location on the flap upper surface accurately. Figure 69(a) shows the

comparison of the lift coefficient versus angle of attack curves for the various configurations. The

configuration with a cove tab of height Zct/C -- 0.005 has a lift coefficient curve that is shifted up by

AC1 = 0.11 relative to the baseline configuration lift coefficient curve. The configuration with a flap

tab of height zft/c = 0.005 has a lift coefficient curve that is shifted up by AC_ = 0.16 relative to the
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Figure 69. Comparison of the force and moment coefficients for the optimum tab configurations with

those for the optimum baseline configuration (6f = 39 °, Xo]/C = 0.015).
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Figure 69 concluded. Comparison of the force and moment coefficients for the optimum tab

configurations with those for the optimum baseline configuration (Sf = 39 °, Xol/C = 0.015).

baseline configuration lift coefficient curve. The configuration with a combination of a cove tab and

flap tab has the best performance of the four configurations. The lift coefficient curve for this

configuration is shifted up by kCl - 0.27 relative to the baseline configuration lift coefficient curve.

This represents an 11% increase in lift coefficient at 0 ° angle of attack. Clmax occurs at the same angle

of attack for all of the configurations. Clmax for the configuration with a cove tab of height
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Zct/C= 0.005 is the same as for the baseline configuration. Clmax for the other two configurations is

increased by 0.09 relative to the baseline configuration.

Figure 69(b) shows the comparison of the lift coefficient versus the drag coefficient curves for the

various configurations. The flap tab configuration has essentially the same drag as the baseline

configuration at a given lift coefficient. The drag coefficient for the cove tab configuration is greater

than that for the baseline configuration by as much as 130 drag counts at the same lift coefficient. The

drag coefficient for the configuration with both a cove tab and a flap tab is nearly double the drag

coefficient of the baseline configuration at the same lift coefficient.

The pitching moment coefficient versus angle of attack curves for the various configurations are

compared in figure 69(c). The configuration with a cove tab has a pitching moment coefficient curve
that is shifted in the negative direction by ACm = 0.02 relative to the baseline pitching moment

coefficient curve. The pitching moment coefficient curve of the configuration with a flap tab is shifted

in the negative direction by ACm = 0.05 relative to the baseline pitching moment coefficient curve. The

configuration with both a cove tab and a flap tab has a pitching moment coefficient curve that is shifted

in the negative direction by ACm = 0.07 relative to the baseline pitching moment coefficient curve. All

three configurations with tabs have pitching moment coefficient curves with a larger positive slope as

angle of attack increases, compared to the baseline pitching moment coefficient curve.
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Figure 70. Effect of a cove tab and flap tab combination on the pressure coefficient distribution of a

baseline configuration with a large flap deflection angle (6f = 50 °, xg/c = 0.04, Xol/C = 0.015).

The results shown in figure 64 suggest that the maximum flap deflection angle for a multi-element

airfoil can be increased by adding a cove tab to the configuration. The maximum flap deflection angle

is normally defined as the largest angle at which a flap gap can be found that keeps the flow over the

upper surface of the flap attached. To investigate whether or not a cove tab will permit a larger

maximum flap deflection angle, the flow over a configuration with a 50 ° flap deflection angle was

computed using INS2D-UP. This flap deflection angle is about 10 ° larger than the maximum flap

deflection angle for the baseline configuration. The flap gap was set at zg/c = 0.04 since results

presented earlier indicate that cove tabs function more efficiently at a larger flap gap. The angle of
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a) Baselineconfiguration.

b) Configurationwithcovetabandflap tab.

Figure71.Streamlinepatternaroundflap for aconfigurationwith a 50° flapdeflection
angle, ascomputedusingINS2D-UP.
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attackfor thecomputationwas0°. Computedresultswereobtainedfor bothabaselineconfiguration
anda configuration with both a cove tab and a flap tab. The height of the tabs was zt/c - 0.01. The

flap tab was included since figure 69 indicates that a configuration with both a cove tab and a flap tab

produces the largest increase in lift coefficient relative to the best baseline configuration.

The computed pressure coefficient distributions for the baseline and tab configurations are shown

in figure 70. The pressure coefficient distribution on the flap of the baseline configuration indicates

that separated flow exists over the entire upper surface of the flap. When the cove tab and flap tab are

added to the configuration, the separated flow is eliminated, increasing the lift on the flap, which in

turn produces a tremendous increase in lift on the main element. The lift coefficient for the baseline

configuration is CI = 2.050. The lift coefficient for the configuration with tabs is increased to

C1 - 3.328. By comparison, the highest computed lift coefficient obtained for a configuration with

tabs and a 39 ° flap deflection angle at an angle of attack of 0 ° was 2.98 (see figure 62). The drag

coefficient is reduced from Cd = 0.1335 to Cd = 0.0855 when tabs are added to the configuration. The

reduction in drag is a result of the elimination of the separated flow over the flap.

The computed streamlines shown in figure 71 provide a graphic illustration of how lift-enhancing

tabs affect the flow for a configuration with a very large flap deflection angle. The streamlines for the

baseline configuration, shown in figure 71 (a), confirm the existence of a large region of separated flow

over the upper surface of the flap. When the lift-enhancing tabs are added to the configuration, the

separated flow region is eliminated, as shown in figure 7 l(b). Note that there is a local distortion of

the streamlines in the wake of the main element near the flap trailing edge in figure 71 (b). As the main

element wake traverses the adverse pressure gradient over the upper surface of the flap, the velocity

deficit in the wake gets very large, forcing the velocity at the center of the wake to be nearly zero. This

causes the streamlines above the flap near the flap trailing edge to "wander" slightly due to the

extremely small components of velocity. The flow never actually reverses, however, as was predicted

by the computations of Carrannanto [12] (see figure 7). The results shown in figures 70 and 71

indicate that lift-enhancing tabs can be used to increase the maximum flap deflection angle of a multi-

element airfoil.

Qualitative Model for Lift-Enhancing Tabs

A great deal of experimental and computed data has been presented illustrating the effect of lift-

enhancing tabs on a multi-element airfoil. A simple analytic model will now be developed which will

provide a mathematical basis for understanding how lift-enhancing tabs affect a multi-element airfoil.

The goal in developing this model is to gain insight into what parameters are important in determining

the performance of the tabs. The model should be kept as simple as possible, yet it should capture all

the dominant effects of the tabs on the airfoil. No attempt is being made to create a model which

accurately predicts the actual performance of tabs on any multi-element airfoil at any condition. It has

already been shown that even a full two-dimensional Reynolds-averaged incompressible Navier-

Stokes code has difficulties in accurately predicting the performance of tabs on a multi-element airfoil

in some cases, such as when large regions of separated flow exist over the flap. However, using tools

such as a two-dimensional Navier-Stokes code in conjunction with simple models to determine how

tabs function and what parameters affect their performance will give designers a better understanding

of how to best incorporate lift-enhancing tabs into multi-element design.

The simple analytic model proposed as a vehicle for understanding how lift-enhancing tabs affect

the performance of a multi-element airfoil is shown in figure 72. The two-element airfoil is
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• Figure 72. Simplified model for qualitatively assessing influence of lift-enhancing tabs on a multi-

element airfoil.
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represented by two symmetric airfoils. The main element has a chord length of cl and the flap has a

chord length of c2. The flap airfoil is deflected to a flap deflection angle 8f relative to the main

element. The flow over this two-element airfoil is assumed to be potential flow. This means all

viscous effects are neglected. The flow is also assumed to be incompressible and two-dimensional.

The two-element airfoil is at an angle of attack _, as shown in figure 72(b). The lift of the main

element is represented by a point vortex of strength 7m located at the quarter chord location on the

airfoil. Similarly, the lift of the flap is represented by a point vortex of strength yf located at the

quarter chord of the flap. The cove tab and flap tab are represented by point vortices with strength 7ct

and 7ft located at the trailing edges of the main element and flap respectively. The direction of rotation

of each vortex is as shown in figure 72(c). Both a cove tab and a flap tab will be included in the

derivation of the model. The tabs can then be easily removed from the model, either individually or

together, by setting the strengths of the vortices representing the tabs equal to zero.

Boundary conditions are established requiring the flow normal to the chord line be zero at the 3/4

chord location denoted by points A and B on the main element and flap respectively. It should be

noted that the location of points A and B are chosen so that the lift curve slope for the two-element

airfoil is equal to the theoretical value of 27t predicted by thin airfoil theory when the strengths of the

point vortices representing the lift-enhancing tabs are set to zero. The location of points A and B may

need to be shifted when 7ct and 7ft are not zero to maintain the proper theoretical lift curve slope;

however, for the present application, this was not done. Using the 3/4 chord location on the main

element and flap for points A and B respectively is adequate for qualitatively studying the effect of lift-

enhancing tabs on a two-element airfoil.

To apply the boundary condition, the velocity induced by each point vortex at points A and B must

be computed. This requires the position vectors between each point vortex and the points A and B to

be defined, as shown in figures 72(b) and 72(c). Using the coordinate system shown in figure 72, the

position vectors can be defined as follows.

/_ = 0.5q i'

R(R3x +_'3z k

_'3: 3_ R3 R3

R4 = 0-5Cz (cos(_y) i'- sin(_z) k)

/_5 :--0"25Cl _"

kR0 R6)

=0.25c2(-cos(Jy):+sin(_y)i)

(85)
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Note thatpositionvectorsRb R4,Rs,andR8arefixedby theairfoil geometryandthechoiceof
locationfor thepoint vorticesandthepointsA andB. ThepositionvectorsR2,R3,R6,andR7are
dependenton theflap deflectionangle,gap,andoverlap.Thepositionvectorsgivenin equation(85)
areexpressedasamagnitudemultiplyingaunitvector. This isdoneto facilitatethevelocity
computations.

Next thevelocityinducedatpointsA andB by eachof thepointvorticesmustbecomputed.A
pointvortexinducesonly atangentialcomponentof velocity. Theradialcomponentof velocityis
alwayszero. Thetangentialcomponentof velocityinducedby apointvortexof strength_,at apoint
thatis adistanceR from the vortex is given by the following equation.

u o =----_ (86)
2_R

Using equation (86) together with the position vectors defined in equation (85), the velocity induced

by each point vortex at points A and B is given by the following set of equations.

2, R3 - R3

1)4_ X: (sin(_:)i'+eos(8:)£)
7/7Cz

Qs- 2Xc, £

Vs _2X_ (sin(_:) i'+ cos(3:) £)
_c z

(87)

With the velocity induced at points A and B by all the point vortices defined by equation set (87),

the boundary condition can now be applied at A and B. Note that velocities V1, V3, Vs, and V7

apply to point A and velocities V2, V4, V6, and V8 apply to point B. The component of each velocity

normal to the chord line associated with points A and B must sum to zero. The free stream velocity

must be included in the summation as well. Performing the summation at point A yields the following

equation.
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This equation can be rearranged to give an expression for the strength ]'m of the point vortex

representing the lift of the main element as follows.

I ,,
7m = 2)'c, + _rc, [w= 2_Ra _,---_-)--_-_[.--_---)j

(89)

Performing the summation at point B yields the equation given below.

1_

(90)

Equation (90) can also be rearranged to give an expression for the strength yf of the point vortex

representing the lift of the flap as shown in equation (91) below.

7I = 2 7_ + ]Tc2<

(u. sin(61)+ w= cos(6 I)) - 7., (R2_ cos(_& ]+ ___sin(_61)
2rcR..zk R 2 ,.,

_ Yc, (R6xcos(-611+_sin(-61)
2_R6 _, R 6

(91)

Equations (89) and (91) represent two equations for the two unknown vortex strengths Ym and 3'f.

The vortex strengths Yct and _/ftwhich represent the cove tab and the flap tab are assumed to be known

from some other source, such as an empirical correlation derived from the experimental data. If there

is no cove tab or flap tab, the corresponding vortex strength is simply zero. The remainder of the

variables in equations (89) and (91) are known from the geometry of the model. Equations (89) and

(91) could be solved explicitly for the unknown vortex strengths Ym and yf in terms of known

quantities; however, it is more instructive to leave them in their present form in order to study how

changing different parameters affects the circulation, and hence the lift, of each element.

Taking the partial derivative of equations (89) and (91) with respect to each of the vortex strengths

yields a set of sensitivity relationships for Ym and Tf. From equation (89) the following relations are

obtained.
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(92)

(93)

1- >0

07's_ 2R7
(94)

Similarly, taking the partial derivatives of equation (91) with respect to each of the vortex strengths

yields

- cos(-6i) + sin(-6:<0
O37m 2 t_

(95)

c?Xi _ c2 R6x cos(-6:)+ Rn_ sin(-_:)/< 0
,:77'<, 2R 6 R6 /?6 )

(96)

3Xf _ 2 > 0 (97)

Taking partial derivatives of equations (89) and (91) with respect to some of the other variables in

those equations would provide additional sensitivity relationships for parameters such as angle of

attack, flap deflection angle, and flap gap. The present emphasis, however, is on understanding how

lift-enhancing tabs affect the performance of a multi-element airfoil. Note that for a given

configuration, all of the quantities on the right hand side of equations (92) through (97) are fixed.

Thus the magnitudes of the partial derivatives are known once a configuration is selected.

Examining the sensitivity relationships given by equations (92) through (94), it is evident that

increases in the vortex strengths 'if ,'ict, and 'ift all increase the vortex strength 7m. On the other

hand, equations (95) and (96) indicate that increases in 'ira and 'ict cause a decrease in the vortex

strength "if. Only an increase in 'ift can cause an increase in the vortex strength 'if, as indicated by

equation (97). This information can be used to develop insight into how lift-enhancing tabs affect the

performance of a multi-element airfoil.

The easiest case to examine is the one in which a flap tab is added to the baseline configuration.

Adding a flap tab increases the strength of the flap vortex 'if and the main element vortex 'im as

predicted by equations (97) and (94). The increase in 'if also contributes to the increase in the vortex

strength "i'm, as predicted by equation (92). On the other hand, the increase in 'ira contributes to a

decrease in the vortex strength 'if, as predicted by equation (95). Since all the experimental and

computed results presented in this report indicate that adding a flap tab to a two-element airfoil causes a
net increase in the lift of both the main element and the flap, the reduction in vortex strength 'if

predicted by equation (95) must be less in magnitude than the increase in vortex strength 'If predicted

by equation (97).
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Theeffectof addingacovetabto thebaselineconfigurationis a littlemoredifficult to analyze.
Equation(93)indicatesthatthevortexstrength7mwill beincreasedby addingacovetab. Thevortex
strength7f,on theotherhand,will be reducedby thecovetabandby theincreasein 7masshownin
equations(96)and(95). Thereductionin strengthof yf causesareductionin 7masindicatedby
equation(92). For configurationswhereno flow separationoccurson theuppersurfaceof theflap,
theexperimentalandcomputedresultspresentedearlierin thisreportindicatethatthelift of themain
elementincreasesandthelift of theflap decreaseswhenacovetabisadded.Thenetlift of thetwo-
elementairfoil remainsessentiallyunchanged.This impliesthattheincreasein 7mandthedecreasein
yfpredictedby thesensitivityrelationshipsmustapproximatelybalanceeachother.

Theuseof pointvorticesto representlift-enhancingtabsisusefulnotonlyfor predictingtheeffect
of thetabson theoveralllift of thevariouselementsin amulti-elementairfoil, butalsofor predicting
thelocalchangesin pressuredistributionontheelementscausedby thetabs. Addingapointvortexto
thetrailingedgeof themainelementor flapwith thedirectionof rotationof thevortexasindicatedin
figure72cwill causeanincreasein thevelocityontheuppersurfaceandadecreasein velocityon the
lowersurfacein thevicinity of thetrailingedge.Thepressurecoefficientson theuppersurface
becomemorenegativeandon thelowersurfacetheybecomemorepositiveasaresult,leadingto an
increasein loadingon theaft portionof theairfoil. Thepointvortexwhichrepresentsacovetab
inducesavelocity whichretardstheflow throughtheflapgap. Thisleadsto alowersuctionpeakon
theflap leadingedge.Thechangesin localpressurecoefficientdistributioncausedbythepoint
vorticesusedto representtabsareconsistentwith thechangesobservedexperimentally.

Themodeldescribedabovecapturesthedominanteffectsof lift-enhancingtabsonamulti-element
airfoil. Themodelis simpleenoughthatanalyticexpressionsfor asetof sensitivityrelationshipscan
bederivedwhichprovideamathematicalbasisfor understandinghowlift-enhancingtabswork. The
accuracyof themodelcanbeincreasedbyincreasingthenumberof pointvorticesusedto represent
eachelementof theairfoil. Note,however,thatall thepointvorticesaredistributedalongthechord
lineof eachelement.Thethicknessof eachelementisnotbeingmodeledanddetailedsurfacepressure
coefficientdistributionscannotbeobtainedfromthismodel. To obtainsurfacepressurecoefficient
distributions,apotentialflow panelmethodcanbeusedto representtheactualsurfaceof eachelement.
Thesurfaceof eachelementis discretizedintoasetof panelsandsingularitiesof unknownstrengthare
distributedonthepanels.The singularitiescanbesources,doublets,vortices,or somecombinationof
these.Appropriateboundaryconditionsareapplied(i.e.flow normalto eachpanelmustbezero),
resultingin a linearsystemof equationswhichmustbesolvedfor theunknownsingularitystrengths.
Reference[45] providesanexcellentdescriptionof awidevarietyof bothtwo-dimensionalandthree-
dimensionalpanelmethods.

To furtherdemonstratethatusingapointvortexatthetrailingedgeof anairfoil elementto
representa lift-enhancingtabis areasonablemodel,asimpletwo-dimensionalpotentialflow panel
codewaswritten. Thecode,calledPMARC2D,isbasedonthethree-dimensionalpanelcodePMARC
[35]. Theairfoil surfaceis discretizedintoasetof N panelsandconstantstrengthdistributionsof
sourcesanddoubletsareappliedto eachpanel.Thestrengthsof thesources,Gj,aredeterminedfrom
aboundaryconditionrequiringtheflow normalto eachpaneltobezero,asshownin equation(98).

era = _. _ (98)

Thus the source strengths are known for a given airfoil geometry and free stream velocity vector. The

strengths of the doublets, btj, are determined by requiring the potential inside the airfoil element to be
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equalto thefreestreampotential. Thisresultsin thefollowingsystemof linearequationsto besolved
for theunknowndoubletstrengths.

N N N N

i=l j=l i=l j=l

(99)

The terms C(/and Bij are influence coefficients. They represent the potential induced at the center of

panel i by a unit strength doublet or source distribution respectively on panel j. The influence

coefficients depend only on the geometry of the discretized airfoil surface and thus are also known for

a given airfoil geometry. Once equation (99) is solved for the unknown doublet strengths, the

tangential component of velocity on the airfoil surface is obtained by differentiating the doublet

distribution and the normal component of velocity on the airfoil surface is given by the source

strengths.

For the airfoil to carry lift, a wake panel with a constant strength doublet distribution on it must be

attached to the airfoil trailing edge to enforce the Kutta condition. The Kutta condition, in the context

of this potential flow model, requires the velocity at the sharp trailing edge of the airfoil to be finite and

to leave the airfoil surface tangent to the bisector of the trailing edge angle. The strength of the doublet

distribution on the wake panel which satisfies this condition is given by

#w =P. -P_ (100)

where gu is the doublet strength on the upper surface panel at the trailing edge and gl is the doublet

strength on the lower surface panel at the trailing edge. Equation (100) can be incorporated into

equation (99) by adding or subtracting the wake panel influence coefficients, Ciw, to the corresponding

surface panel influence coefficients, Ciu and Cit, respectively in equation (99).

A point vortex can be easily added to the trailing edge of the airfoil to represent a lift-enhancing tab

by noting that a panel with a constant strength doublet distribution gj on it is equivalent to two point

vortices with strength gj and opposite sign located at the edges of the panel. Thus a point vortex of

strength 3'tab can be added to the airfoil trailing edge by increasing the doublet strength on the wake

panel by _ttab = 3ttab• Equation (100) then becomes

#w = #. - #; + P,_b (101)

Equation (101) is incorporated into equation (99) in the same manner as was done for equation (100).

The extra term grab is a known quantity (user-specified), so the product Ciw gtab can be moved to the

right hand side of equation (99). Adding the point vortex to the airfoil trailing edge by increasing the
doublet strength on the wake panel by _l.tab = 7tab modifies the Kutta condition to simulate the effect of

the lift-enhancing tab on the airfoil.
PMARC2D was used to model the NACA 632-215 ModB two-element airfoil that was used

throughout this research. The upper and lower surfaces of the main element were each represented

with 50 equally-spaced panels. The flap upper and lower surfaces were each represented with 25

equally-spaced panels. The configuration chosen for this illustration was one with a flap deflection

angle of 27 °, a flap gap of Zg/C = 0.05, a flap overlap of Xol/C= 0.015, and an angle of attack of 0 °.

The four cases which were run included the baseline configuration, a cove tab configuration, a flap tab

configuration, and a configuration with both a cove tab and a flap tab. The strengths of the point
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vorticesusedto representthetabsweredeterminedona trial anderrorbasis.Thestrengthof thepoint
vortexusedto modeltheflap tabwaschosensothatthecomputedresultsmatchedtheexperimentally
observedjump in pressurecoefficientat theflap trailingedge.Thestrengthof thepoint vortexusedto
simulatethecovetabwaschosensothatthecomputedresultsbestmatchedboththeexperimentally
observedjump in thepressurecoefficientatthetrailingedgeof themainelementandthereductionin
theflap leadingedgesuctionpeak. ThevortexstrengthsTct and _/ft, determined for the cove tab

configuration and the flap tab configuration respectively, were used together for the configuration with

both a cove tab and a flap tab.

The results of the PMARC2D computations are shown in figure 73. The pressure coefficient

distribution for each of the tab configurations is compared with the baseline configuration. In figure

73(a), the effect of the cove tab on the baseline pressure coefficient distribution can be seen. The

circulation of the main element is increased slightly and the loading at the trailing edge of the main

element is .also increased. The suction peak at the flap leading edge has been reduced as well.

Comparing figure 73(a) with the experimental results shown in figure 55, it is evident that the changes

to the baseline pressure distribution caused by adding a cove tab are well predicted by PMARC2D.

Note that the pressure coefficient distribution in the cove region of the main element is not accurately

predicted by PMARC2D. Since PMARC2D is a potential flow code, it cannot predict the separated

flow region that exists in the cove on the main element.

The effect of the flap tab on the baseline pressure coefficient distribution is shown in figure 73(b).

The circulation of both the main element and the flap is increased when the flap tab is added to the

baseline configuration. The loading at the trailing edge of the flap is increased as well. Comparing

figure 73(b) to the experimental results in figure 56, it can be seen that the PMARC2D model does a

good job of predicting the changes to the baseline pressure coefficient distribution caused by the

addition of the flap tab. A similar comparison of the PMARC2D results for the configuration with

both a cove tab and a flap tab, shown in figure 73(c), to the experimental results shown in figure 57
indicates that PMARC2D also handles this case well.

Both the simple analytic model developed earlier and the PMARC2D results just presented indicate

that many of the flow field changes caused by adding lift-enhancing tabs to a multi-element airfoil can

be explained using potential flow models. The primary way that viscous effects interact with the

performance of lift-enhancing tabs is through the separation of the boundary layer on the upper surface

of the flap. It has been shown that adding a cove tab to a multi-element airfoil can move the flow

separation point on the flap upper surface further aft or eliminate the flow separation entirely. The

mechanism by which a cove tab accomplishes this effect is the reduction of the flap leading edge

suction peak. This reduces the adverse pressure gradient for the boundary layer on the flap upper

surface, permitting it to remain attached longer. Conceptually, it is possible to couple a potential flow

code such as PMARC2D with an integral boundary layer scheme to produce a code which could

predict boundary layer separation locations, thus obtaining a more complete model for analyzing lift-

enhancing tabs on a multi-element airfoil. However, the economy of using INS2D-UP to perform

these type of computations would seem to make such a step unwarranted. Development of a potential

flow method coupled with a boundary layer scheme for analyzing three-dimensional applications of

lift-enhancing tabs would make more sense, since three-dimensional Navier-Stokes computations are

very time-consuming to perform.
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b) Effect of a flap tab on the baseline pressure distribution.

Figure 73. Potential flow code PMARC2D predictions of the effect of lift-enhancing tabs on the

pressure coefficient distribution of a baseline configuration (_Sf= 27 °, Xg/C = 0.05, Xo]/C = 0.015,

0_ = 0°).
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c) Effect of both a cove tab and a flap tab on the baseline pressure distribution.

Figure 73 concluded. Potential flow code PMARC2D predictions of the effect of lift-enhancing tabs on

the pressure coefficient distribution of a baseline configuration (Sf = 27 °, xg/c = 0.05, Xol/C = 0.015,

_X= 0°).
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CONCLUSIONS

An experimentalandcomputationalinvestigationof theeffectsof lift-enhancingtabsonamulti-
elementairfoil hasbeenconducted.Thegoalof thestudywasto developanunderstandingof theflow
physicsassociatedwith lift-enhancingtabsonamulti-elementairfoil. Theexperimentalworkwas
conductedin theNASA Ames7-by 10-FootWind Tunnel. A NACA 632-215ModBairfoil with a
30%chordfowlerflap wasusedasthemodelfor thetest. Parametersvariedin thetestincludeflap
deflectionangle,flap gap,tabheight,andtheairfoil elementto whichthetabwasattached.Flapangle
wasvariedfrom 19° to 39° in 10° increments.Flapgapwasvariedfrom Zg/C = 0.02 to 0.05 in 0.01

increments. Tab heights of zt/c = 0.0025, 0.005, and 0.01 were tested. The tabs were mounted to the

main element trailing edge (cove tab), the flap trailing edge (flap tab), and to both elements

simultaneously. All of the testing was conducted at a Reynolds number of 3.5 x 106.

The computational database was generated using the two-dimensional, incompressible, Reynolds-

Averaged Navier-Stokes code INS2D-UP. A chimera composite structured grid was created which

represented the NACA 632-215 ModB two-element airfoil in the 7- by 10-Foot Wind Tunnel. Time

was spent refining the grid to capture all of the dominant flow field features, particularly in the region

near the trailing edge of each element and in the wakes. Grid spacing normal to all surfaces of the

airfoil, including the lift-enhancing tabs, was set to lxl0 -5 to resolve the details of the boundary

layers. Grid sensitivity studies showed that solutions obtained on the standard grid were grid

independent. All of the computed results were obtained by running INS2D-UP in the steady-state

mode. The Spalart-Allmaras turbulence model was used and the flow was assumed to be fully-

turbulent. Computed results were obtained for all experimental configurations with flap deflection
angles of 29 ° and 39 ° and tab heights of zt/c = 0.005, as well as the corresponding baseline cases (with

no tabs). The average computation time for each case was approximately 1200 seconds on a Cray

C-90 computer.

Initial comparisons between the experimental and computed results produced poor agreement, with

the computed results overpredicting the airfoil lift coefficient by a large margin. Much of the

discrepancy between the experimental and computed results was traced to changes in the flap deflection

angle under load in the experiment. The flap deflection angle in the experiment was reduced by 2 ° to 3°

under aerodynamic load, depending on the initial flap deflection angle setting. The amount of change

in flap deflection angle was found to be primarily a function of the initial static flap deflection angle.

When the change in flap deflection angle under aerodynamic load was taken into account in the

computations, much better agreement between computed and experimental results was achieved,

particularly for cases where no flow separation existed on the flap upper surface. It was more difficult

to achieve good correlation between experimental and computed results for configurations where

significant flow separation existed over the flap upper surface. This was due primarily to inaccuracies

in the computed separation location. Overall, however, the computed results predicted all of the trends

observed in the experimental data quite well. The computational database was used to supplement the

experimental data and provide additional details about the flow field.

The effect of cove tabs on multi-element airfoil performance is dependent on flap angle. For

baseline configurations with moderate flap deflection angles, the flow over the upper surface of the

flap is fully attached and adding a cove tab produces only a small increase in lift coefficient. The lift

coefficient of the main element increases, but the increase is offset by a decrease in the lift coefficient

of the flap. As the flap gap is increased, the increment in lift coefficient on the main element becomes

larger than the reduction in lift coefficient of the flap, resulting in a net increase in lift for the airfoil.

Drag is increased significantly relative to the baseline configuration when a cove tab is added. For
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baselineconfigurationswith largeflapdeflectionangles,theflow overmuchof theuppersurfaceof
theflap isseparatedandaddingacovetabproducesasignificantincreasein lift coefficientrelativeto
thebaselineconfiguration.In thiscase,thecovetabreducesor eliminatestheflow separationoverthe
uppersurfaceof theflapby reducingtheflap leadingedgesuctionpeak.Thisreducestheadverse
pressuregradientthattheboundarylayerontheflapuppersurfacemusttraverse,allowingit to remain
attachedlonger.Theeliminationof theseparatedflow overtheflap leadsto alargeincreasein lift and
asignificantreductionin drag.

Theeffectof flap tabsonmulti-elementairfoilperformanceisnotdependentonflapangle.Adding
aflaptabto abaselineconfigurationsignificantlyincreasesthelift coefficient,regardlessof whether
theflow overtheuppersurfaceof theflap isattachedor separated.Thelift coefficientincreaseson
boththemainelementandtheflapwhenaflap tabisaddedto theconfiguration.Dragcoefficientat a
givenlift coefficientdoesnot increasewhenaflap tabis addedto thebaselineconfiguration.Thedrag
coefficientsfor theconfigurationswith flap tabsweretypicallywithin 10dragcountsof thedrag
coefficientsfor thebaselineconfigurationatthesamelift coefficient.

Thecoveandflap tabscanbeusedincombinationto achievelift coefficientsthataresignificantly
higherthanispossiblewith anybaselineconfigurationatagivenangleof attack.Thecombinationof a
covetabof heightZct/C= 0.005andflap tabof heightzft/c= 0.005onaconfigurationwith a39° flap
angleandaflapgapof Zg/C- 0.04producedan11%increasein lift coefficientat0° angleof attack
comparedto the highestlift coefficientachievedwithabaselineconfigurationatthatangleof attack.
Clmax was increased by 3% compared to the highest Clmax for a baseline configuration. Computed

results indicate that the maximum flap deflection angle can be extended by as much as 10 ° without any

flow separation over the flap by adding a cove tab and flap tab combination to the airfoil. Sensitivity

of the mult-element airfoil lift coefficient to the flap gap size is also greatly reduced when a cove tab is

added to the configuration.

A simple analytic model for lift-enhancing tabs on a two-element airfoil was developed to provide a

more detailed understanding of how lift-enhancing tabs work. The model assumes the effect of lift-

enhancing tabs on the performance of a multi-element airfoil can be described using potential flow.

The lift-enhancing tabs are represented by point vortices located at the trailing edges of the airfoil

elements. The lift of each airfoil element is modeled with a point vortex located at the quarter chord

location of the element. Mathematical expressions were then developed for the sensitivity of the lift of

one element to the lift of the other and to the presence of lift-enhancing tabs. These sensitivity

relationships provide a mathematical basis for explaining the effects of lift-enhancing tabs on multi-

element airfoils. The trends predicted by the sensitivity relationships are in good agreement with those

observed in the experimental and computational databases. The potential flow model with the tabs

represented by point vortices captures all of the dominant effects of lift-enhancing tabs on the pressure

coefficient distributions of each element, for cases with no flow separation. This was demonstrated by

using a two-dimensional potential flow panel method to represent the two-element airfoil and point

vortices at the element trailing edges to represent the lift-enhancing tabs. The predicted changes in

pressure coefficient distribution due to the addition of tabs to the configuration are in close agreement

with experimental results.
This research shows that lift-enhancing tabs provide a powerful means of increasing the high-lift

performance of a multi-element airfoil. The most likely application for lift-enhancing tabs on a

commercial transport would be in the approach and landing configurations, when the high-lift system

is typically fully deployed to achieve the maximum lift coefficient at a given angle of attack. The high

lift system becomes the limiting factor in the performance of the aircraft at this condition. The increase

in performance afforded by lift-enhancing tabs for this configuration would allow approach speed or
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angleof attackto bereducedor maximumlandingweightto beincreased.Alternatively,lift-enhancing
tabsmayallow thenumberof trailing-edgeflapelementsto bereducedwithoutdegradationin the
performanceof thehigh-lift system,leadingto lighter,mechanicallysimplerflapactuationsystems.
Useof lift-enhancingtabscouldalsohaveimplicationsfor thingslike landinggearsizeandthrust-
reverserperformancerequirements.

In thetake-offconfiguration,thehigh-lift systemis only partiallydeployed.As demonstratedby
thepresentstudy,thecovetabis notusefulfor configurationswheretheflow over theflapupper
surfaceis fully attached.It hasbeenshownthataflaptabcansubstantiallyincreasethelift of amulti-
elementairfoil, evenat themoderateflapdeflectionanglesassociatedwithatake-offconfiguration.
However,the increasein lift providedby aflap tabcouldalsobeachievedby increasingtheflap
deflectionangle. It is notclearfrom thepresentstudy whetherusingaflap tabwouldbemore
effectivethanincreasingtheflapdeflectionangle.

Aircraft manufacturerssuchasBoeingoftenmodifythedesignof anaircraftthathasbeenin
productionfor awhile to createagrowthversionthatprovidesincreasedcargoor passengercapacity
or increasedrange.Lift-enhancingtabswouldbeusefulasaninexpensivemeansof providingthe
increasedhigh-lift performancesometimesnecessaryfor growthversionsof anaircraftwithout
changingtheexistinghigh-lift system.Lift-enhancingtabscanalsobeusedto restoreperformance
which is lostdueto thepresenceof flap trackfairingsandotherhardwarenecessaryto deploytheflap
system.For generalaviationaircraft,lift-enhancingtabsprovideaninexpensivemeansof increasing
theperformanceof existinghigh-lift systemswhicharenotalwayshighly-optimized.

Furtherwork remainsto fully definetheimpactof lift-enhancingtabsonhigh-lift systems.The
impactof three-dimensionaleffects,suchaswing sweep,on theeffectivenessof lift-enhancingtabs
needsto beinvestigated.Thetwo-dimensionalNavier-StokescodeINS2D-UPhasbeendemonstrated
to beaneffectivetool for analyzinglift-enhancingtabsonmulti-elementairfoils. Full three-
dimensionalNavier-Stokessolutionsfor atypicaltransportaircrafthigh-lift systemwith lift-enhancing
tabs,however,areexpensiveandtime-consumingto obtain. Thedevelopmentof athree-dimensional
potentialflow methodcoupledwith aboundarylayerschemeandtabsrepresentedby vortexelements
wouldbeanattractivealternativefor analyzingsuchproblems.An empiricalor analyticexpression
relatingtabheightto thestrengthof thevortexusedto representthetabremainsto bedefined.Tabs
augmentthenumberof parametersavailableto workwith in high-lift systemdesignandchangesome
of theconstraints,suchasmaximumflapdeflectionangle,governingthehigh-lift optimization
process.Optimizationstudiesneedto beperformedonmulti-elementairfoil configurationswith lift-
enhancingtabsto determinenewhigh-lift systemperformanceboundaries.
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APPENDIX A

Table 2. Main Element and Flap Coordinates

main x_ mNn _c flap x/c

0.950E 0.0049 1.0000

0.949C 0.0050 0.9990

0.940C 0.0062 0.9950

flap_c

-0.0020

-0.0019

-0.0015

0.920¢ 0.0081 0.9900 -0.0010

0.900C 0.0099 0.9800 -0.0004

0.850C 0.0128 0.9600

0.820C 0.0137 0.9400

0.800C 0.0140 0.9250

0.770C 0.0133 0.9000

0.750C 0.0120 0.8750

0.735C 0.0094 0.8500

0.730( 0.0080 0.8250

0.725( 0.0066 0.8000

0.720( 0.0050 0.7700

0.710C -0.0006 0.7500

0.709£ -0.0012 0.7250

0.7200

0.7160

0.7140

0.7120

0.7080

0.7060

0.7050

0.708£ -0.0020

0.707£ -0.0030

0.703C -0.0076

0.701_ -0.0116

0.695( -0.0197

0.690£ -0.0250

0.685( -0.0280

0.680( -0.0310 0.7040

-0.0330 0.70300.675(

0.6500 -0.0368

-0.0404

-0.0438

-0.0470

0.6250

0.6000

0.575(

0.7020

0.7010

0.7005

0.700C

0.7005

0.7012!

0.7020

0.0001

-0.0003

-0.0013

-0.0033

-0.0058

-0.0086

-0.0117

-0.0150

-0.0192

-0.0218

-0.0254

-0.0259

-0.0261

-0.0260

-0.0258

-0.0249

-0.0240

-0.0235

-0.0228

-0.0220

-0.0210

-0.0192

-0.0178

-0.016C

-0.0135

-0.0116

-0.0098

0.5500 -0.0501

0.5250 -0.0530

0.5000 -0.0556

0.4750 -0.0580

0.4500 -0.0601

0.7040 -0.0065

0.7070 -0.003C

0.4250 -0.0618 0.7100 -0.0006

0.4000 -0.0632 0.7200 0.005C

0.3750 -0.0641

0.3500 -0.0647

0.7300 0.008(

0.7350 0.0094
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Table2 Continued.MainElementandFlapCoordinates

mainx/c mainz/c flapx/c flapz/c

0.325C -0.0648 0.7600 0.0128
0.300C -0.0645 0.7900 0.0138
0.275£ -0.0637 0.8100 0.0139
0.250£ -0.0625 0.8200 0.0137
0.225£ -0.0609 0.8400 0.0131
0.200[ -0.0588 0.8600 0.0122
O.175( -0.0562 0.8800 0.0110
O.150C -0.0531 0.9200 0.0081
O.125C -0.0494 0.9400 0.0062
O.100( -0.0450 0.9600 0.0039
0.090C -0.0430 0.9800 0.0016
0.080C -0.0408 0.9850 0.0010
0.070£ -0.0384 0.9900 0.0003
0.060£ -0.0357 0.9925 0.0000
0.050C -0.0328 0.9950 -0.0004
0.040£ -0.0294 0.9990 -0.0009
0.030C -0.0256 1.0000 -0.0010
0.020C -0.0211
0.010£ -0.0150
0.005£ -0.0104
0.004C -0.0093
0.003£ -0.0079
0.002C -0.0063
0.001C -0.0042
0.000_ -0.0037
0.000( 0.0000
0.000_ 0.0075
0.001£ 0.0085
0.002( 0.0125
0.003( 0.0156
0.004( 0.0182
0.005( 0.0205
0.0100 0.0293
0.0200 0.0408
0.0300 0.0489
0.0400 0.0550
0.0500 0.0599
0.0600 0.0640
0.0700 0.0673
0.0800 0.0702
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Table2 Concluded.Main ElementandFlapCoordinates

mainx/c mainz/c

0.0900 0.0727
0.1000
0.1250
0.150C
0.175C
0.200C
0.225C
0.250C
0.275£
0.300C
0.325(
0.350(
0.375(
0.4000

0.0748
0.0788
0.0816
0.0835
0.0847
0.0855
0.0859
0.0860
0.0859
0.0856
0.0853
0.0852
0.0845

0.4250 0.0835
0.4500 0.0819[
0.4750 0.0800
0.5000 0.0777
0.5250 0.0750
0.5500 0.0720
0.575G 0.0688
0.600C 0.0653
0.625C 0.0615
0.650C 0.0576
0.675C 0.0534
0.700£ 0.0491
0.725C 0.0447
0.750C 0.0402
0.775( 0.0357
0.800( 0.0311
0.8250
0.8500
0.8750
0.9000
0.9250
0.9350
0.940C
0.9425
0.945C
0.949C
0.950C

0.0266
0.0222
0.0179
0.0137
0.0098
0.0084
0.0076
0.0073
0.0069
0.0063
0.0062

flapx/c flapz/c
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APPENDIX B

Table 3. Main Element and Flap Pressure Tap Locations (center of span)

Index Main

m x/c z/c

(3 0.95 0.004 c

0.93

0.9

1£

11

12

12

14

15

1(

17!

18

19

20

21

0.85

0.825

0.0128!

0.01372

0.0145 0.1

6 0.775 0.01319

0.75 0.012

0.725

0.7

0.0066

-0.01394

Flap

xf0/c

1.000

0.960

zf0/c I
-0.0020

0.0001

0.900 -0.0033

0.850 -0.0086

0.800 -0.0150

0.770 -0.0192

0.750 -0.0218

0.740 -0.0234

0.730

0.720

-0.0249

-0.0259

0.67933 -0.03096 0.71(3 -0.0254

0.6204 -0.041 0.705 -0.0235

0.55_ -0.0491 0.70(3 -0.016G

0.4495 -0.0601 0.705

0.313_ -0.0647 0.71G

0.19_ -0.0586

0.1282 -0.0499

0.094( -0.044

0.0_ -0.0408

0.06_ -0.0376

0.0541 -0.0341

0.0414 -0.0295

22 0.0289 -0.0252

23 0.0169 -0.0194

24 0.0061 -0.0115

25 0 (

26 0.0014 0.0102

27 0.0047 0.0195

28 0.0097 0.0289:

0.0162 0.0369

0.044

0.0501

0.0554

0.72G

0.73C

0.74C

0.75C

-0.0051

-0.0006

0.005C

0.008C

0.0101

0.0114

0.0598

0.0644

0.0691

0.0741

29

3G

31

32

33

34

35

3(

0.0236

0.0318

0.0407

0.05

0.0611

0.0762

0.0964

0.77C 0.0131

0.80( 0.0138

0.85(

0.90(

0.95(

0.98(

1.00C

0.012(

0.0094

0.005(

0.001(

-0.002(
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Table3 Concluded.Main ElementandFlapPressureTapLocations(centerof span)

Index Main Flap
m x/c z/c xfO/c zfO/c

37 0.1229 0.0785
38 0.1568 0.082';
39 0.1992 0.0845
40 0.2508 0.085c
41 0.3116 0.085_
42 0.3805 0.084g
43 0.4555 0.0816
44 0.5333 0.074
45 0.6102 0.0638
46 0.67933 0.05255
47 0.7 0.0491
48 0.725 0.0447
49 0.75 0.0402
5G 0.775 0.0357
51 0.8 0.0311
52 0.825 0.0266
53 0.85 0.0222
54 0.875 0.0179
55 0.9 0.0137
5_ 0.925 0.0098
5_ 0.95 0.0049
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